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Figure 1: Providing user recommendations for healthier dietary behavior requires monitoring dietary intake. Therefore,
in previous work, researchers have proposed different approaches that utilize the user’s smart devices (e.g., smartphones,
smartwatches or smartglasses).

ABSTRACT
Monitoring dietary intake is essential to providing user feedback
and achieving a healthier lifestyle. In the past, different approaches
for monitoring dietary behavior have been proposed. In this po-
sition paper, we first present an overview of the state-of-the-art
techniques grouped by image- and sensor-based approaches. After
that, we introduce a case study in which we present a Wizard-of-Oz
approach as an alternative and non-automatic monitoring method.

CCS CONCEPTS
• Human-centered computing → Human computer inter-
action (HCI); Ubiquitous and mobile computing; • Applied
computing → Consumer health; Health informatics.
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1 INTRODUCTION
According to theWorld Health Organization [30], obesity has nearly
tripled worldwide in the last 45 years. In 2016, 39% of all adults were
overweight, while even 13%were obese. Moreover, the prevalence of
obesity is increasing among children and adolescents. While in 2000,
only 2.9% of all 5 to 19-year-olds were obese, in 2016, 6.8% of this
group suffered from obesity [31]. Especially in the regions of Europe
and North America, people suffer from unhealthy lifestyles that
lead to obesity [13]. The observed trend will profoundly impact the
health of our society, as overweight and obesity can lead to diseases
such as cardiovascular disease, diabetes, and cancer [7, 20, 23].

Besides physical activity, the most important factor for a healthy
lifestyle is the dietary behavior [22]. To estimate a person’s cur-
rent health status, to predict the health impact due to behavioral
changes, and to provide helpful recommendations to motivate such
changes, the person’s dietary behavior is required. To capture di-
etary behavior automatically, several food intake parameters are
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required, such as time of day, duration, type of food, quantities,
calories, nutritional values, fluid intake, among others. However,
these parameters vary in capture difficulty. For instance, differ-
ent parameters may require different sensors and devices, or in
some parts, we have no solution to monitor them efficiently (or at
all) [2, 6, 19, 26].

In this position paper, we first discuss previous work on mon-
itoring dietary intake. Here, we distinguish between image- and
sensor-based analysis and provide an overview of state-of-the-art
approaches, highlighting their individual strength and weaknesses.
Thereafter, we introduce the EGhI project1 as a case study for di-
etary monitoring and discuss the approach we plan to apply.

2 DIETARY MONITORING APPROACHES
Detailed self-reports, called diaries, were originally used to record
food intake, as these initially represent a straightforward way for
any user to document their daily food intake [9]. However, these
diaries usually contain a high bias and are unsuitable for longer use,
as the user’s motivation decreases after a few days. Usually values
are estimated for the sake of simplicity, copied from the previous
day, or the documentation is aborted and very rough estimates
are made at the end of the week. Especially, the users’ awareness
for food intake with regards to snacking is very limited retrospec-
tively [29] and, therefore, the estimated amount of food intake can
be off by 50% in either direction [27]. Therefore, automatic dietary
monitoring is desirable to enable reliable long-term recording of
food intake. Typical approaches are image-based [37], which are en-
abled by the progress in computer vision using convolutional neural
networks. But also sensor-based approaches have been studied [6].

2.1 Image-based Analysis
Since it is convenient, the initial ideas for image-based monitoring
of dietary behavior are using cameras of wearables such as smart
glasses [25] or smart phones [37]. Object detection and classifica-
tion can be used to detect dietary intake using artificial intelligence,
particularly convolutional neural networks. By training with food
databases such as the Pittsburgh fast-food image dataset (PFID) [12]
or the Food-101 [8], detection of food intake and thus detection
of time and duration can be logged. However, accurate estimation
of calories and nutritional values is difficult, as even recognizing
specific food categories can be problematic. Some ingredients are
difficult to distinguish after cooking when the food is processed [11].
Estimating portion sizes is also challenging because no scale is ini-
tially given. This can be made possible by using reference objects,
but these must then always be carried along [14, 37]. To improve us-
ability, a suitable reference object can be selected such as normalized
plates, cutlery, or for example, the user’s thumb [24]. Alternatively,
the reference object such as a cube can be displayed in augmented
reality [33]. However, most of the image-based approaches still
require the user to actively take photos including the reference ob-
ject. Therefore, the disadvantage of of users forgetting to log some
of their food, especially snacks, is still comparable to paper-based
reports [34].

1EGhI project. https://www.eghi-projekt.de/, last retrieved July 22, 2022.

2.2 Sensor-based Analysis
To actually perform automated monitoring and thus minimize re-
porting errors, researchers have been working on on-body sensing
of eating behavior. The data of used sensors can resemble some
self report information [6] while logging the data continuously
and location-independent. For this research area, different types
of sensors and attachment points are used to log food intake: First,
arm movements while eating and thus intake gestures can be de-
tected using wristbands with IMUs [18]. Chewing then produces
sounds that can be recorded, for example, with a wearable such
as ear attached microphones [3] or smart glasses [28]. Different
textures of food result in different chewing sounds and, therefore, it
is possible to classify the chewed food or at least the type of food [4].
Swallowing then also produces sounds, but the throat movement
can also be detected. This can be used to identify the volume of
food intake [5]. In addition, other methods can be used: A cardiac
response such as heart rate and blood pressure change takes place
and there is a temperature increase after food intake [15]. Stomach
sounds of gastric activity can also be detected [32]. Furthermore,
there is also a change in body weight and composition, which can
be measured with an external scale. However, when trying to design
a more convenient and mobile system, accuracy is a challenge [16].

Another major approach for dietary monitoring is the usage of
sensor-based utensils and tables. Smart dining table approaches
are location-dependent by design but can be used to recognize the
plates where food is taken from via RFID tags [10]. By tracking
the weight change, the system can predict the quantity of food
intake. Using a fine grained pressure textile matrix, such systems
have been made more mobile [36]. Additionally to tracking the
weight change and identifying the plate that is used, food intake ac-
tions, such as cutting, scooping, and stirring can be detected. Prior
work regarding smart utensils also presented mobile approaches
to perform automated monitoring. For example, smart forks can
detect food pick-up gestures and estimate the food amount that is
consumed [35], while a smart spoon analyzing the reflected light
spectra of an LED array can recognize the meal composition of
food on top of the utensil [17]. Similarly, smart cups with optical
spectrometers, pH and conductivity sensors can classify liquid in-
take [21]. All in all, no single approach can cover all dimensions
of dietary behavior. Therefore, the question remains to what ex-
tent a combination of these approaches together with image-based
analysis can provide comprehensive monitoring.

3 CASE STUDY: EGHI PROJECT
Our work is embedded in the EGhI project, which aims to develop
an AI-based assistance system that supports healthy everyday be-
havior. Wearables such as smartphones and smartwatches will be
used as data sources, while other sensing devices may supplement
these depending on the parameters selected for monitoring (e.g.,
a sensor batch with a thermal camera to monitor drinking and
food intake [1]). The goal is to model user behavior and derive
recommendations for healthier lifestyle choices. Nevertheless, it
remains unclear which recommendations we can provide as our
model heavily depends upon the measured parameters. While we
could directly start to develop measuring techniques for different
devices, the contribution of the different parameters to the model
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Figure 2: Proposed Architecture for the EGhI project

may vary (and building functional prototypes is time-consuming).
Hence, we plan to take a Wizard-of-Oz approach in our initial
field studies with the duration of multiple weeks. The fundamen-
tal idea is that participants are asked to take photos of their food
intake in their daily lives and to record – automatically in the
background – from available sensors (e.g., inertial sensors in smart-
phones). Thereby, we can manually inspect and label participants’
dietary behavior (with the help of experts) and identify relevant
parameters as well as potential ways of measuring them (e.g., one
could map the smartwatch data to the type of food consumed). As a
result, we can specify the parameter of our model and simulate data
input with our Wizard-of-Oz data collected. Later, we can design
and implement the automatic recording of specific parameters and
replace the manually collected data. Following this approach, we
can explore different user interfaces and ways of communicating
the recommendation to users early on. Moreover, we can focus
on measuring only relevant parameters for which we know that
they provide a meaningful contribution to the user model. In Fig-
ure 2, we illustrate EGhI’s proposed architecture to implement our
Wizard-of-Oz approach. The architecture connects to an expert sys-
tems to provide overall participant guidance and recommendation
evaluation. To collect the data required to detect dietary behavior
patterns, the architecture uses a mobile phone with two wearable
devices that collect contextual information using a context provider
and the BEXOME application to collect manual entries. The EGhI
back-end processes the collected data using a Digital Twin model to
generate behavioral changes recommendations that are delivered
to the user using state of the art HCI applications, like smart noti-
fiers, or research prototypes such as a magic-mirror. The latter is
intended to make dietary choices and their long-term effects clear
to users ahead of time.
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