Reflecting on Approaches to Monitor User’s Dietary Intake

Jonas Keppel
Human-Computer Interaction Group,
University of Duisburg-Essen
Essen, Germany
jonas.keppel@uni-due.de

Uwe Gruenefeld
Human-Computer Interaction Group,
University of Duisburg-Essen
Essen, Germany
uwe.gruenefeld@uni-due.de

Marvin Strauss
Human-Computer Interaction Group,
University of Duisburg-Essen
Essen, Germany
marvin.strauss@uni-due.de

Luis Ignacio Lopera Gonzalez
Chair of Digital Health,
Friedrich-Alexander University
Erlangen, Germany
luis.i.lopera@fau.de

Oliver Amft
Chair of Digital Health,
Friedrich-Alexander University
Erlangen, Germany
oliver.amft@fau.de

Stefan Schneegass
Human-Computer Interaction Group,
University of Duisburg-Essen
Essen, Germany
stefan.schneegass@uni-due.de

ABSTRACT
Monitoring dietary intake is essential to providing user feedback and achieving a healthier lifestyle. In the past, different approaches for monitoring dietary behavior have been proposed. In this position paper, we first present an overview of the state-of-the-art techniques grouped by image- and sensor-based approaches. After that, we introduce a case study in which we present a Wizard-of-Oz approach as an alternative and non-automatic monitoring method.

CCS CONCEPTS
• Human-centered computing → Human computer interaction (HCI); Ubiquitous and mobile computing; • Applied computing → Consumer health; Health informatics.

KEYWORDS
eHealth, behavior change, nutritional intake, dietary behavior

ACM Reference Format:

1 INTRODUCTION
According to the World Health Organization [30], obesity has nearly tripled worldwide in the last 45 years. In 2016, 39% of all adults were overweight, while even 13% were obese. Moreover, the prevalence of obesity is increasing among children and adolescents. While in 2000, only 2.9% of all 5 to 19-year-olds were obese, in 2016, 6.8% of this group suffered from obesity [31]. Especially in the regions of Europe and North America, people suffer from unhealthy lifestyles that lead to obesity [13]. The observed trend will profoundly impact the health of our society, as overweight and obesity can lead to diseases such as cardiovascular disease, diabetes, and cancer [7, 20, 23].

Besides physical activity, the most important factor for a healthy lifestyle is the dietary behavior [22]. To estimate a person’s current health status, to predict the health impact due to behavioral changes, and to provide helpful recommendations to motivate such changes, the person’s dietary behavior is required. To capture dietary behavior automatically, several food intake parameters are
required, such as time of day, duration, type of food, quantities, calories, nutritional values, fluid intake, among others. However, these parameters vary in capture difficulty. For instance, different parameters may require different sensors and devices, or in some parts, we have no solution to monitor them efficiently (or at all) [2, 6, 19, 26].

In this position paper, we first discuss previous work on monitoring dietary intake. Here, we distinguish between image- and sensor-based analysis and provide an overview of state-of-the-art approaches, highlighting their individual strength and weaknesses. Thereafter, we introduce the EGhI project as a case study for dietary monitoring and discuss the approach we plan to apply.

2 DIETARY MONITORING APPROACHES

Detailed self-reports, called diaries, were originally used to record food intake, as these initially represent a straightforward way for any user to document their daily food intake [9]. However, these diaries usually contain a high bias and are unsuitable for longer use, as the user’s motivation decreases after a few days. Usually values are estimated for the sake of simplicity, copied from the previous day, or the documentation is aborted and very rough estimates are made at the end of the week. Especially, the users’ awareness for food intake with regards to snacking is very limited retrospectively [29] and, therefore, the estimated amount of food intake can be off by 50% in either direction [27]. Therefore, automatic dietary monitoring is desirable to enable reliable long-term recording of food intake. Typical approaches are image-based [37], which are enabled by the progress in computer vision using convolutional neural networks. But also sensor-based approaches have been studied [6].

2.1 Image-based Analysis

Since it is convenient, the initial ideas for image-based monitoring of dietary behavior are using cameras of wearables such as smart glasses [25] or smart phones [37]. Object detection and classification can be used to detect dietary intake using artificial intelligence, particularly convolutional neural networks. By training with food databases such as the Pittsburgh fast-food image dataset (PFID) [12] or the Food-101 [8], detection of food intake and thus detection of time and duration can be logged. However, accurate estimation of calories and nutritional values is difficult, as even recognizing specific food categories can be problematic. Some ingredients are difficult to distinguish after cooking when the food is processed [11]. Estimating portion sizes is also challenging because no scale is initially given. This can be made possible by using reference objects, but these must then always be carried along [14, 37]. To improve usability, a suitable reference object can be selected such as normalized plates, cutlery, or for example, the user’s thumb [24]. Alternatively, the reference object such as a cube can be displayed in augmented reality [33]. However, most of the image-based approaches still require the user to actively take photos including the reference object. Therefore, the disadvantage of of users forgetting to log some of their food, especially snacks, is still comparable to paper-based reports [34].

2.2 Sensor-based Analysis

To actually perform automated monitoring and thus minimize reporting errors, researchers have been working on on-body sensing of eating behavior. The data of used sensors can resemble some self report information [6] while logging the data continuously and location-independent. For this research area, different types of sensors and attachment points are used to log food intake: First, arm movements while eating and thus intake gestures can be detected using wristbands with IMUs [18]. Chewing then produces sounds that can be recorded, for example, with a wearable such as ear attached microphones [3] or smart glasses [28]. Different textures of food result in different chewing sounds and, therefore, it is possible to classify the chewed food or at least the type of food [4]. Swallowing then also produces sounds, but the throat movement can also be detected. This can be used to identify the volume of food intake [5]. In addition, other methods can be used: A cardiac response such as heart rate and blood pressure change takes place and there is a temperature increase after food intake [15]. Stomach sounds of gastric activity can also be detected [32]. Furthermore, there is also a change in body weight and composition, which can be measured with an external scale. However, when trying to design a more convenient and mobile system, accuracy is a challenge [16].

Another major approach for dietary monitoring is the usage of sensor-based utensils and tables. Smart dining table approaches are location-dependent by design but can be used to recognize the plates where food is taken from via RFID tags [10]. By tracking the weight change, the system can predict the quantity of food intake. Using a fine grained pressure textile matrix, such systems have been made more mobile [36]. Additionally to tracking the weight change and identifying the plate that is used, food intake actions, such as cutting, scooping, and stirring can be detected. Prior work regarding smart utensils also presented mobile approaches to perform automated monitoring. For example, smart forks can detect food pick-up gestures and estimate the food amount that is consumed [35], while a smart spoon analyzing the reflected light spectra of an LED array can recognize the meal composition of food on top of the utensil [17]. Similarly, smart cups with optical spectrometers, pH and conductivity sensors can classify liquid intake [21]. All in all, no single approach can cover all dimensions of dietary behavior. Therefore, the question remains to what extent a combination of these approaches together with image-based analysis can provide comprehensive monitoring.

3 CASE STUDY: EGHI PROJECT

Our work is embedded in the EGhI project, which aims to develop an AI-based assistance system that supports healthy everyday behavior. Wearables such as smartphones and smartwatches will be used as data sources, while other sensing devices may supplement these depending on the parameters selected for monitoring (e.g., a sensor batch with a thermal camera to monitor drinking and food intake [1]). The goal is to model user behavior and derive recommendations for healthier lifestyle choices. Nevertheless, it remains unclear which recommendations we can provide as our model heavily depends upon the measured parameters. While we could directly start to develop measuring techniques for different devices, the contribution of the different parameters to the model
may vary (and building functional prototypes is time-consuming). Hence, we plan to take a Wizard-of-Oz approach in our initial field studies with the duration of multiple weeks. The fundamental idea is that participants are asked to take photos of their food intake in their daily lives and to record – automatically in the background – from available sensors (e.g., inertial sensors in smartphones). Thereby, we can manually inspect and label participants’ dietary behavior (with the help of experts) and identify relevant parameters as well as potential ways of measuring them (e.g., one could map the smartwatch data to the type of food consumed). As a result, we can specify the parameter of our model and simulate data input with our Wizard-of-Oz data collected. Later, we can design and implement the automatic recording of specific parameters and replace the manually collected data. Following this approach, we can explore different user interfaces and ways of communicating the recommendation to users early on. Moreover, we can focus on measuring only relevant parameters for which we know that they provide a meaningful contribution to the user model. In Figure 2, we illustrate EGhI’s proposed architecture to implement our Wizard-of-Oz approach. The architecture connects to an expert system to provide overall participant guidance and recommendation evaluation. To collect the data required to detect dietary behavior patterns, the architecture uses a mobile phone with two wearable devices that collect contextual information using a context provider and the BEXOME application to collect manual entries. The EGhI back-end processes the collected data using a Digital Twin model to generate behavioral changes recommendations that are delivered to the user using state of the art HCI applications, like smart notified, or research prototypes such as a magic-mirror. The latter is intended to make dietary choices and their long-term effects clear to users ahead of time.

ACKNOWLEDGMENTS

This work is partially funded by the German Federal Ministry of Education and Research (16SV8528).

REFERENCES


