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Figure 1: We investigate the identifcation of users performing tasks in VR. (A) We normalize their virtual body proportions 
(WN: Without Normalization, AN: Arm length Normalization, HN: Height Normalization, BN: Both Normalizations, black: 
real body proportions, gray: applied normalization). (B) Tasks consist of a Bowling and an Archery scenario. (C) The captured 
spatial motion data enables implicit identifcation (upper: model training data, lower: validation data from another day). 
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investigate the role of users’ physiology in behavioral biometrics by 

Virtual   Reality (VR) is      becoming increasingly popular both in the virtually altering and normalizing their body proportions. We fnd 

entertainment and professional domains. Behavioral biometrics that body normalization in general increases   the       identifcation rate,
have e   r cently              been investigated as a means to continuously and in some cases by up to 38%; hence, it improves the performance of
implicitly identify users in VR. Applications in VR can specifcally identifcation systems.           
beneft from this, for example, to adapt virtual environments and 
user interfaces as well as to authenticate users. In this work, we 
conduct a lab study (N = 16) to explore how accurately users can 
be identifed during two task-driven scenarios based on their spatial 
movement. We show that an identifcation accuracy of up to 90% is 
possible across sessions recorded on diferent days. Moreover, we 
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1 INTRODUCTION 
Virtual Reality (VR) has undergone a substantial evolution in recent 
years and is increasingly becoming a part of users’ daily lives. 
Although games are currently the main driver for VR headsets, other 
applications are also gaining importance. Examples range from 
training [37] to rehabilitation and therapy [34] to e-commerce [30]. 

As is the case for other technologies, VR can beneft from knowl-
edge about the current user’s identity, particularly for multi-user 
scenarios. Such scenarios could include work spaces in which VR 
headsets are shared or situations at home in which multiple fam-
ily members or friends use VR headsets together. In such settings, 
knowing a user’s identity creates opportunities for adapting the 
user interface to the user’s needs, loading and setting personal 
preferences, or granting access to personal information (e.g., social 
media, personal messages, or fnancial information). 

Current approaches to identify (or authenticate) users employ 
forms like PINs or passwords entered through hand-held controllers 
and a virtual keyboard. These methods can interrupt interaction 
with the system (e.g., through a password prompt popping up) and 
hamper user immersion in a virtual environment. Moreover, hand-
held controllers as an input modality are readily observable by a 
bystander, making them inherently insecure [10]. 

These traditional approaches are generally implemented by mak-
ing the user perform an explicit interaction with the identifcation 
mechanism, such as selecting their user name from a list or the 
entry of a password through a virtual keyboard. Nevertheless, the 
utilization of an implicit interaction for identifcation is more fa-
vorable, as it does not interfere with the user’s interaction but can 
derive the necessary information for identifcation from the user’s 
general interaction with an application. 

In this work, we create an identifcation system, capable of im-
plicitly identifying users by their behavior in VR. Specifcally, we 
look into two diferent task-based scenarios. Our scenarios mimic 
common VR games, such as Bowling and Archery, where users 
naturally interact with the game (cf., Figure 1). Our identifcation 
system employs the elicited information from the user’s interaction 
to implicitly determine the user’s identity in the background. We 
use a standard consumer-grade head-mounted display (HMD) in a 
lab study (N = 16) and collect spatial motion data from both the 
HMD and the hand-held controllers. To understand the infuence 
of physiology on behavioral biometrics in VR, we normalize each 
user’s height and arm length so that all participants shared the 
same virtual body proportions. 

We collected data in two separate study sessions to investigate 
identifcation performance across several days, and we achieved an 
accuracy of up to 90%. Also, we found that normalizing body pro-
portions (precisely, normalizing height) for identifcation increases 
the identifcation accuracy by up to 38%. 

Although this identifcation accuracy is not sufcient for 
security-critical use cases, the underlying principle allows for creat-
ing VR applications that derive the user’s identity from their regular 
interaction with the application transparently in the background. 
Hence the burden of explicit identifcation is removed from the user, 
allowing developers of VR applications to create a painless process 
for the user and a seamless experience. Simultaneously, utilization 
of a body normalization can strongly enhance identifcation accu-
racy. 

Contribution Statement. The contribution of this work is 
twofold. First, we create a prototype for implicit user identifcation 
in VR through task-driven behavioral biometrics in two scenarios 
and report on a user study (N = 16). Our study, which spread across 
two diferent days, includes investigating of how modifed body 
proportions infuence identifcation accuracy. Second, we provide 
guidelines and discuss how the interactive VR system’s identif-
cation rate can be enhanced by employing body normalization. 
Moreover, we publish our elicited data set. 

2 RELATED WORK 
Our work is situated within the domain of behavioral biometrics 
for the purpose of identifcation in VR. As we elicit spatial motion 
data, we also look at task-driven biometrics. 

2.1 Identifcation and Authentication in VR 
Authentication methods for VR are mostly adaptations from mobile 
devices, implementing knowledge-based schemes (e.g., PIN and 
password entry or pattern locks) [40]. Previous research has shown 
that traditional methods for authentication in VR, such as the entry 
of a PIN or password, are slow and subject to threats commonly 
known from the real world, such as shoulder surfng [10]. In partic-
ular, prior work showed that up to 18 % of authentication attempts 
can be observed from a shoulder-surfng bystander [10]. 

Virtual reality systems are in general characterized by a high 
degree of immersion [6]. Therefore, to keep this immersion, implicit 
authentication schemes that do not interrupt the interaction of 
the user [36] and are carried out through actions that the user 
would perform anyways seem to be a particularly good ft for 
VR [15]. Besides the benefts of implicit authentication, behavioral 
biometrics also enables continuous authentication [8]. 

The disadvantages of currently used authentication methods in 
VR and the need for implicit authentication methods motivates the 
development of new methods for identifcation and authentication 
in VR. Pfeufer et al. have shown that body motion and proprio-
ception can be used for authentication in VR by measuring spatial 
relations between the controllers and the HMD movement [31]. 
Similarly, Mustafa et al. developed a solution to derive identity 
from the head movement patterns which can be collected from 
the HMD [28]. Sivasamy, Sastry, and Gopalan developed a similar 
approach for the goal of continuous authentication [38]. These 
concepts have been extended to include knowledge-based compo-
nents, such as 3D passwords [4] in conjunction with gaze and head 
pose [9]. Furthermore, Mathis et al. include hand motion during 
the input of a PIN in VR as a second modality [23]. 

2.2 Task-driven Biometrics 
In recent years a new subcategory of behavioral biometrics moved 
into the focus of research. Task-driven biometrics are based on data 
elicited through a user’s performance of a manual task. Igarashi et 
al., for instance, measured individual characteristics with regards 
to a driving task to identify the driver of a car [14]. Pohl et al. 
found that even a single button press contains a high degree of 
individual behavior [32]. Kupin et al. tasked users to throw a ball 
in VR and were able to recognize them across diferent sessions 
that took place days apart [20]. An extended analysis of this task 
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Figure 2: Illustration of the Bowling task. Figure (a) depicts the frst discrete phase that spans from the initiation of the task 
until the red ball on the pedestal is grabbed. The participant would then execute the swinging motion (b) and release the ball 
(c). The fnal phase forms the duration until the ball either hits the pins or leaves the alley by intersecting the red border (d). 

and experimental setup was performed by Ajit et al. [3], yielding 
a higher accuracy. Miller et al. created an extended solution for 
rejecting intruders [26] and performed a within- and cross-system 
evaluation [27]. “BioMove” utilized the kinesiological movements of 
the user (captured through an HMD and controllers) while grabbing, 
moving and dropping balls and cubes from one position into another 
container [29]. Moreover, they included eye tracking in their system 
and recorded gaze (i.e., where users were looking during the task). 

The behavior we classify always occurs with respect to a problem, 
or in case of task-driven biometrics, a task. Mecke et al. have shown 
that typing behavior can be intentionally altered to ft a given 
target behavior [25] and Prange et al. lead an investigation into the 
specifcs of individual user behavior with respect to goal-oriented 
tasks [33]. In a broader sense, also mimicry attacks (i.e. mimicking 
a legitimate user) use task-driven behavior changes, though, the 
goal is to gain access to a biometric system rather than the change 
itself. Related work has shown such attacks to be successful for 
several systems, including touch input behavior [16] and keystroke 
dynamics on PCs [39] and mobile phones [17]. 

2.3 Virtual Embodiment 
Kilteni et al. defned the sense of embodiment, stating that the sense 
of embodiment emerges when the body’s properties are processed 
as if they were the properties of one’s own biological body [18]. 
The virtual embodiment is dependent on the realism of the virtual 
representation of the real body part [5]. For example, VR users 
identify stronger with a realistic virtual hand than with a more 
abstract virtual representation. Such factors can play an important 
role in various felds that apply VR such as medicine [22]. 

Previous research also investigated the manipulation of virtual 
body parts. Kilteni et al. experimented with “a very long arm il-
lusion”, investigating the limits of changing the VR user’s arm 
length up to the point that it is not experienced as one’s own any-
more [19]. Rothe et al. found that a decreased eye height while 
watching 360° recordings in VR was less disturbing to the viewers 
than an increased one [35]. Viewers preferred that the virtual eye 
height matches their real eye-level. Furthermore, if that was not the 
case, a lower virtual eye height was preferred over a higher one. 

Similar to these approaches, we modify the virtual arm length 
and the body height for the purpose of normalization across partic-
ipants to investigate behavior based identifcation. 

2.4 Summary 
Prior work identifed behavioral biometrics as a suitable means to 
identify users implicitly. Applying such behavioral biometric-based 
approaches to VR comes with many benefts: based on knowledge 
on the identity, adaptive VR interfaces can be built, and identifca-
tion might be realized without breaking the immersion and with 
minimal efort for the user. This opportunity has been recognized 
by the community, as was shown by prior work, that the application 
of behavioral biometrics to VR is generally possible. 

What is missing as of today is a more nuanced understanding of 
this approach, in particular, (a) how it performs beyond artifcial 
tasks and (b) how the physiology of the user infuences accuracy. 
To close this gap, we contribute an investigation of how well users 
can be identifed during ecologically valid tasks. In addition, VR 
provides an unprecedented chance to investigate the infuence of 
physiology since it allows physiological properties of users to be 
freely manipulated. 

3 APPARATUS 
This section describes how we designed an apparatus to investigate 
(a) realistic VR tasks by designing meaningful scenarios and (b) the 
infuence of physiology on behavioral biometrics by normalizing 
physiological features in VR. 

3.1 Scenarios 
We implemented two diferent task-based scenarios for the users 
to solve: a Bowling and an Archery task. As an engine, we utilized 
Unity3D and targeted the Oculus Quest as a consumer-grade entry-
level HMD. The scenarios we implemented were designed to be 
familiar and straightforward to solve. Bowling employs a coarse-
grained movement and Archery, in turn, requires a precise, fne-
grained movement to be completed successfully. 
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Figure 3: Illustration of the Archery task. First the bow needs to be moved towards the quiver to pick up an arrow (a). The 
second phase spans from the mounting of the arrow at the bow until the string is being pulled (b). During the third phase, the 
string is pulled to tension the bow (c). The fourth phase spans from the release of the arrow until it hits a target (d). 

3.1.1 Bowling-Task. In the bowling task (cf., Figure 2), users spawn 
in a virtual bowling alley with 1.3 m width and a length of 7 m 
between the start and pins. The bowling ball has a virtual mass 
of 5 kg and an angular drag of 0.05. It spawns on the right side 
on a pedestal that has a height of 0.75 m. If participants miss a 
shot completely, the ball will despawn once it exceeds a boundary 
(cf., Figure 2(d)), otherwise hit pins are replaced for each new trial. 

In this controller-based scenario, users have the goal to hit as 
many pins as possible. The task can be decomposed into three 
discrete phases (cf., Figure 2). In the frst phase, the user grabs the 
ball with the controller by initiating a pressing motion on the grip 
button. The second phase consists of the swinging motion, while 
the grip button is being pressed until the ball is released. Once the 
ball is released, the third phase is initiated, which remains active 
until the ball either hits the pins or goes of the alley. After the third 
phase is complete, a new round is initiated. 

3.1.2 Archery-Task. Archery (cf., Figure 3) is a controller-based 
task that requires high precision. Users are placed in a forest en-
vironment, approximately 3 m in front of a target. Their goal is to 
shoot an arrow at the bull’s eye. The bow is mounted to the user’s 
left hand while the right hand is free to pull the string. The ar-
rows are attached to the bow by moving it towards a virtual quiver 
(located on the left-hand side, cf., Figure 3). 

This task can be decomposed into four discrete phases. The frst 
phase is active until the bow is moved towards the quiver, and an 
arrow attaches to the bow. The second phase ends when the user 
grabs the string of the bow with the right hand. The third phase 
describes the period of the string being pulled until it is released or 
the hand is moved too far away from the back of the bow. The task 
concludes with the fourth phase until the arrow hits an object. 

3.2 Body Normalization 
We impose two diferent body normalization types to explore the 
infuence of physiology in behavioral biometrics: 1) Arm length 
Normalization (“AN”) and 2) Height Normalization (“HN”). For 
applying the normalizations, our system acquires physiological 
data by measuring users’ height and arm length through the HMD. 

Therefore, the application requests users to stand up straight and 
stretch their arms in front of them for 10 seconds. Consequently, 
the system determines their heights as reported by the HMD and 
measures the maximum distance from controllers to HMD. 

3.2.1 Arm length Normalization. The frst type of normalization 
is the normalization of the user’s virtual arm length. The normal-
ization is achieved by modifying the positional mapping of the 
virtual hand onto the real-world controller. The efect is that the 
virtual maximum arm extension length is the same for all users. 
This is established through a linear change in the acceleration of 
the user’s hands up to the point that the arm is fully extended. Here, 
the coordinates of the left and right hand of the user are calculated 
by the formula PHand = PH ead + d · D · F , where PHand repre-
sents the position of the hand, PHead is the position of the head 
(i.e., the spatial coordinates of the HMD), d is a direction vector 
pointing in the direction of the hand, D represents the previously 
measured maximum distance from the head to the hand and F is an 
automatically calculated normalization factor. Subsequently, this 
normalization allows the assignment of a consistent virtual arm 
length to all users. Thereby, a short-armed person receives longer 
virtual arms, whereas a long-armed person receives shorter virtual 
arms. Although not primarily intended, this normalization also as-
sures that every person has the same virtual capability to solve the 
given tasks, as the required arm length is normalized independent 
of the real capabilities. 

3.2.2 Height Normalization. The second type of normalization is 
the normalization of the user’s body height. This normalization 
allows the assignment of the same height across all users. The mod-
ifed reference point is the virtual head of the user. In contrast to 
the Arm length Normalization, another design approach is required 
for the implementation of this normalization because changes to 
the positional mapping (e.g., by increasing the acceleration) be-
tween the virtual and real head can induce unwanted side efects 
such as cybersickness. To mitigate these efects, we implemented 
this normalization by setting the tracking origin type of the “OVR-
CameraRig” object within Unity3D to ’eye level’ and assigning its 
y-position a constant value. This results in an unhindered change 



Understanding User Identification in Virtual Reality Through Behavioral Biometrics CHI ’21, May 8–13, 2021, Yokohama, Japan 

of position of the virtual head up to the constantly set virtual height 
but may result in the impression that the virtual feet are below the 
level of the foor (i.e., a user that is taller than the set height would 
be able to reach past the virtual foor by bowing down). To counter 
this drawback, the tasks were designed so that the users neither 
have to perform this motion nor do they have to pick something 
up from the level of the real foor. 

4 STUDY 
We verifed our approach to task-driven biometrics and explored 
the efects of the changes imposed by the body normalization. 

4.1 Study Design 
To verify our approach of task-driven biometrics, we conducted a 
within-subject controlled laboratory study in Virtual Reality using 
the Oculus Quest. Our study followed a repeated-measures design 
and was split into two sessions that took place on two diferent days, 
sharing the same study design in both sessions. All participants 
took part in both sessions. We chose this split to prove the stability 
of our approach and to gain realistic data as the behavior might 
change between days. This allows us to explore whether we would 
be able to re-identify users across separate days. 

Our independent variables were Scenario with two levels (Bowl-
ing vs. Archery) and Type of Normalization with four levels (Without 
Normalization vs. Arm length Normalization vs. Height Normaliza-
tion vs. Both Normalizations). Each Scenario was tested in a block. 
All blocks were counterbalanced using a Latin square. In each block, 
we tested all Types of Normalization, again using a Latin square 
design. Here, we took all combinations of both Latin square designs, 
resulting in eight confgurations. 

Our research questions were: 
RQ1 To what extend are diferent Virtual Reality scenarios 

feasible to implicitly identify users? 
RQ2 To what extend do physiological factors infuence Behav-

ioral Biometrics? 

4.2 Study Setting 
We chose the Oculus Quest head-mounted display (HMD) as target 
device for Virtual Reality. It features two six Degrees-of-Freedom 
(DoF) controllers, supporting orientation and positional tracking 
based on an inside-out tracking system and ofering a feld-of-view 
of 100° at a refresh rate of 72 Hz. It operates without being connected 
to a computer, thus being a wireless, consumer-grade device. 

The study took place in a room with 3m×3m of free space. The 
experimenter prepared the Oculus Quest for the procedure by en-
abling the integrated screen recording of the virtual environment 
and covering the internal proximity sensor so that the device does 
not switch into standby mode. Furthermore, the experimenter set 
the safety guard beforehand and took care that the participants 
would not leave the designated area during the study. 

4.3 Procedure 
Before the beginning of the actual study, participants gave written 
and informed consent. We specifcally informed the participants 
that they could cancel their participation in the study at any time 

without detriments. Also, we answered any question from the par-
ticipants with regards to the procedure but we did not tell them 
about the imposed types of body normalization prior to the study. 
Moreover we informed the participants that the virtual environment 
and their actions in the virtual environment would be recorded, 
both data-wise and video-wise (external and in-app recording). Af-
ter a short introduction to the Virtual Reality headset, assisted 
adjustment of the straps and the adjustment of the device itself (i.e., 
the inter-pupillary distance), we tested two blocks, one for each 
scenario (Bowling and Archery). After each block, the participants 
took of the headset and flled out a Raw NASA TLX questionnaire 
[12], rating each scenario’s workload. The Raw NASA TLX is a 
commonly used modifcation of the NASA TLX and the employed 
scale was the standardized 20 pt. scale [11]. 

Participants could always try out the scenario frst. Afterwards, 
we tested four types of normalization (i.e., Without Normalization, 
Height Normalization, Arm length Normalization, and Both Normal-
izations) for 12 trials each. We counterbalanced the order of the 
blocks and the order of the types of normalization within each 
block using a Latin-square design. After participants had fnished 
all blocks, we conducted a semi-structured interview. We repeated 
the procedure in a second session without the questionnaires and in-
terviews. Each participant took approximately 45 minutes to fnish 
the frst session and about 30 minutes for the second session. 

4.4 Participants 
We recruited 16 volunteers (2 female, 14 male) via University mail-
ing list (mean age=25.47, SD=3.44, all were right-handed). We asked 
participants for their height as reported in their personal ID card, 
which yielded an average value of 177.85 cm (SD=8.23 cm). On a 
scale from 1 (low; never experienced VR before) to 10 (high; daily 
experience of VR) they rated their previous VR experience at an 
average of 3.78 (SD=3.19). In total six participants responded that 
they had a form of visual impairment and one did report partial 
color blindness. During the study, fve out of these six participants 
wore a visual aid (e.g., glasses or contact lenses) as a compensation. 
One participant did not wear any corrective eye wear but assured 
that this would not afect their performance in VR. 

For the body normalizations, we applied 168 cm as the normal-
ized height, which equals to the average human height in Europe 
subtracted by a measured margin for the Oculus Quest device [24]. 
Moreover, we set 0.7 m as the normalized arm length. We obtained 
this value through measurement, following the principle of Da 
Vinci’s Vitruvian Man. 

4.5 Ethics 
To preserve participants’ privacy, we assigned pseudonyms to the 
data of each participant at the time of elicitation. After fnishing 
the study, we deleted the mapping of participants’ true identity 
to the given pseudonyms so that no backtracking of participants’ 
true identities is possible. Note, that one purpose of the system is 
identifcation. If employed in practice, it would be important to 
inform users about the fact that the collected data is or can not 
only be used for interaction, but also to identify them. Moreover, 
VR applications in general can bear a risk to privacy, as discussed 
by Adams et al., which needs to be accounted for [2]. 

https://age=25.47
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5 ANALYSIS 
We create a deep learning classifer that is able to predict the user’s 
identity across the two sessions of our study. Furthermore, we 
evaluate its validation accuracy that is changed by the imposed 
body normalizations. 

5.1 Data Set 
For the following evaluation, we split our data set into four separate 
training and validation sets, one for each of the four types of body 
normalization1. For training classifers, we always use the data 
from the frst day of our study. Validation is exclusively performed 
through testing the data from the second day of the study. We 
opted for this split, as we assume that consecutive, repetitions of 
the task’s execution are in general more likely to be similar than 
executions that were captured days apart. Furthermore, this strict 
split demonstrates the real-world applicability of our approach, as 
participants had to re-equip the HMD for the second day. Thus, the 
model cannot learn the specifcs of one session such as wearing 
the HMD in an odd way. Each repetition in the study forms one 
sample in our data set. We always compare data within one type of 
normalization and never across conditions. In contrast to our split, 
a cross-validation with a standard split (e.g., 80:20) would lead to 
a mixing of data that was elicited on diferent days resulting in a 
model possibly using session dependent information. Most likely 
this would enhance the overall achieved results but would give the 
classifer an unrealistic advantage. 

We then plotted all elicited data and performed a visual inspec-
tion. We did this in order to fnd random outliers that occured due 
to a tracking loss and removed them from the data set. Figure 4 
visualizes an excerpt of the spatial data that we captured from two 
diferent participants and Figure 5 depicts the deviation of user 
height in the Archery scenario. 

5.2 Preprocessing 
We apply the same preprocessing to all of the elicited data. First of 
all, we deduct the global coordinates of the hand-held controllers 
from the HMD to obtain their local coordinates with relation to 
the HMD. This means that the obtained data is invariant of its 
global position and that we do not classify users based on their 
absolute position within the tracking space. Moreover, we create 
several feature sets (cf., Table 1) to train the model on diferent 
parts of the available data. If we include the HMD in a featureset, 
we transform its coordinates with respect to its origin in the virtual 
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environment, i.e., we subtract the global coordinates of the initial 
point of appearance from all subsequently captured points. This 
leads to the HMD being represented by its change in space over Figure 4: Motion data of the left hand-held controller in the 
time (e.g., the HMD moved 30 cm in a certain direction) instead Archery scenario without any applied body normalization 
of its consecutive global coordinates. We furthermore normalize for participants 2 and 11. The axes indicate the global coor-
the Euler angle values in an interval of [0, 1). This way, we reach dinate frame. The colors indicate the repetitions within the 
positional invariance of the HMD so that only the motion that the study. “S1” and “S2” correspond to the frst and second day 
participants apply is transferred to the model. of the study and “x/z”, “x/y” and “z/y” are the plotted Unity 

Each repetition in the study corresponds to one sample in the axes (i.e., top view, side view, frontal view). The similarity 
data set. As each repetition bears a diferent length and some repe- within each participant is well visible together with the dis-
titions form very large outliers, this consequently means that the similarity between participants. 
shape of the data is hard to unify. We tried the common approach 

1Our data set is publicly available. It can be retrieved from https://research.hcigroup.de. 
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Figure 5: Deviation of user height for the Archery scenario 
across all repetitions. 

of prepadding the data with zeros, yet a single outlier results in a 
large amount of padding for all samples. Moreover, this padding 
might have results on the training and validation, since the model 
then could learn to classify the length of the execution of a motion. 
We therefore changed our approach to reach temporal invariance. 

To classify the fne grained motion of the participants, we imple-
mented a window slicing approach [21]. Here we employ a rolling 
window with a size of 10 and a step size of 1 that iterates over each 
participant’s data recording to generate new samples for each step. 
We apply the same preprocessing and the same sliding window to 
the validation data. As we classify each sample as generated by the 
sliding window, we furthermore perform a majority vote of the 
predicted labels to determine the user’s identity. 

5.3 Model Architecture 
To classify the elicited data from the study we developed two deep 
learning models in Python, utilizing Keras and Tensorfow [1, 7]. 
Our frst model consists of three long-short term memory layers 
(“LSTM”) with 100 units each and is a recurrent neural network 
(“RNN”) [13]. The frst layer returns its sequences to the second 
layer and the second layer repeats this by returning its sequences to 
the third layer. All LSTM layers utilize the default sigmoid activation 
function. At last, a fully-connected layer utilizing the “softmax” 
activation function is reached that consists of 16 units, where each 
unit corresponds to the identity of one person. We used Adam as 
an optimizer with a learning rate of 0.001 and trained the model 
for 500 epochs. 

The second model employs a multilayer perceptron (“MLP”) and 
consists of a Flatten input layer, followed by three Dense layers 
that respectively consist of 256, 64 and 16 units. The frst two dense 
layers use the rectifed linear activation function (“ReLU”) whilst 
the last utilizes “softmax” as an activation function. For this model, 
stochastic gradient descent (“SGD”) is used as an optimizer with a 
learning rate of 0.001. As this model converges in general faster, we 
trained it only for 100 epochs. We set a constant random generator 
seed for the training of all model instances. 

Table 1: Table of all evaluated feature sets with their descrip-
tions and cardinalities (Card.). The HMD and both controller 
objects consist of three coordinates each (x, y, z) for their po-
sition and rotation. 

Id. Card. Controllers HMD Timestamp Phase 

F0 19 × × × 
F1 18 × × 
F2 19 × × × 
F3 12 × 

5.4 Feature Sets 
We created multiple groups of features to train the classifer on. 
Each group formed one set of features. Thus, we seek the optimal 
set of information the classifer requires for a high identifcation 
rate (cf. Table 1). 

F0 The feature set F0 consists of the phase, the HMD and the 
controllers. Both the local position (x , y and z) and rotation 
(euler _x , euler _y and euler _z) of the HMD and the hand 
objects are part of this set. The phase describes the stage of 
the interaction for the Bowling and Archery scenario. 

F1 The next feature set, F1, is a reduction of F0, as it takes the 
same features but removes the phase. 

F2 The feature set F2 employs the same information as F0 but 
replaces the phase with a timestamp that denotes the passed 
time from the beginning of the interaction. The timestamp is 
intended as a hint for the order of the slices that are created 
from the rolling window so that relationships across slices 
can be learned by the neural network. The timestamp is a 
normalized number within the interval [0, 1). 

F3 Finally, the feature set F3 only consists of the vectors from 
the controllers towards the HMD. 

6 RESULTS 
First, we present our identifcation results that we obtained from 
our validated classifer. Next, we discuss the outcome of the semi-
structured interviews and the Raw NASA TLX. 

6.1 Identifcation Results 
We validated our two model architectures with all feature sets 
(cf., Table 1). Table 2 refers to our achieved results. The highest 
overall identifcation accuracy is 0.90 for the Archery scenario with 
feature set F3 and the application of Height Normalization with the 
recurrent model (cf., Figure 6). For Bowling, the highest accuracy 
is 0.68 with feature set F2, where the Height Normalization was 
applied in combination with the recurrent model. 

We applied inferential statistics to prove that the imposed body 
normalizations have an efect on the identifcation rate of the clas-
sifer. We apply the statistics to the per-participant identifcation 
rate, i.e., the diagonal axis in each obtained confusion matrix for 
all scenarios and feature sets. We frst perform a Friedman test for 
each row in Table 2, once for the multilayer perceptron model and 
once for the recurrent model. If the Friedman test returns signif-
cant results (p < 0.05), we conduct six Wilcoxon tests for pairwise 
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Table 2: Overview of all validation accuracies (Acc.) for all scenarios, feature sets (F.-Set) and body normalizations “Without 
Normalization” (WN), “Arm Length Normalization” (AN), “Height Normalization” (HN) and “Both Normalizations” (BN). We 
diferentiate between recurrent model “RNN” and multilayer perceptron “MLP”. Highest accuracy per model is marked bold. 

Acc. WN Acc. AN Acc. HN Acc. BN 
Scenario F.-Set MLP RNN MLP RNN MLP RNN MLP RNN 

Archery F0 0.32 0.48 0.56 0.67 0.57 0.63 0.68 0.86 
Bowling F0 0.55 0.65 0.41 0.53 0.55 0.59 0.46 0.58 

Archery F1 0.38 0.54 0.56 0.63 0.65 0.69 0.64 0.84 
Bowling F1 0.49 0.59 0.42 0.50 0.55 0.62 0.48 0.60 

Archery F2 0.37 0.56 0.56 0.65 0.66 0.66 0.63 0.86 
Bowling F2 0.52 0.58 0.42 0.47 0.54 0.68 0.45 0.56 

Archery F3 0.61 0.63 0.68 0.70 0.78 0.90 0.68 0.84 
Bowling F3 0.55 0.56 0.43 0.47 0.63 0.66 0.55 0.67 

Table 3: Overview of all signifcant Wilcoxon tests to describe the efect of the body normalizations. WN = Without Normaliza-
tion, HN = Height Normalization, BN = Both Normalizations, RNN = Recurrent Neuronal Network (frst model architecture), 
MLP = Multilayer Perceptron (second model architecture). 

Scenario Model F-Set. Comparison W Z p r 

Archery RNN F0 WN vs. BN 8 -2.650 .034 .166 
Archery MLP+RNN F0 WN vs. BN 32 -3.444 .002 .108 
Archery MLP+RNN F0 HN vs. BN 40 -2.603 .048 .081 
Archery MLP+RNN F1 WN vs. BN 58 -2.793 .025 .087 
Archery MLP+RNN F1 WN vs. BN 49 -2.795 .025 .087 
Archery MLP+RNN F2 WN vs. BN 49 -2.795 .025 .087 
Bowling MLP+RNN F3 AN vs. HN 55 -2.680 .037 .084 

comparisons of all body normalizations. Due to the large amount of 
combinations, we only report signifcant results. Table 3 provides 
an overview. 

A Friedman test for the recurrent model with feature set F0 
for Archery showed a signifcant diference (χ2(3) = 8.168,p = 
0.043, N = 16). The pairwise comparison of the four types of body 
normalization through Wilcoxon tests revealed one signifcant ef-
fect of an increased identifcation: Without Normalization vs. Both 
Normalizations (W = 8, Z = −2.650, p < 0.034, r = 0.166). To 
assess the efect that both models are subject to, we conducted an-
other Friedman test on the fused confusion matrices of the MLP and 
recurrent model for Archery in F0. We found a signifcant diference 
(χ2(3) = 10.951, p = 0.0120, N = 16). Comparing Without Normal-
ization vs. Both Normalizations through Wilcoxon tests lead to a 
signifcant result (W = 32, Z = −3.444,p < 0.002, r = 0.108). Com-
paring Height Normalization vs. Both Normalizations lead again to 
a signifcant diference (W = 40, Z = −2.603,p < 0.048, r = 0.081). 

For F1 in Archery and both fused models, we again identifed 
a signifcanct diference by a Friedman test (χ2(3) = 11.033,p = 
0.0116, N = 16). A Wilcoxon test for Without Normalization vs. Both 
Normalizations resulted in a signifcant increase in identifcation 
performance (W = 58, Z = −2.793, p < 0.025, r = 0.087). Similarly, 
for Archery and F1 with two fused confusion matrices, we identifed 
another signifcant Friedman test (χ2(3) = 8.284, p = 0.040, N = 
16). The subsequent Wilcoxon test for Without Normalization vs. 

Both Normalization showed another signifcant diference (W = 
49, Z = −2.795, p < 0.025, r = 0.087). 

For feature set F2, the Friedman test only yielded a signifcant 
diference for the fused confusion matrices in Archery (χ2(3) = 
8.284,p = 0.040, N = 16). The resulting Wilcoxon Test for Without 
Normalization vs. Both Normalization showed signifcant diferences 
(W = 49, Z = −2.795, p < 0.025, r = 0.087). 

Finally, we looked into feature set F3. For Archery, when fus-
ing the confusion matrices, a Friedman test yielded signifcance 
(χ2(3) = 7.938, p = 0.047, N = 16). None of the following Wilcoxon 
tests could confrm this assertion. For Bowling, the Friedman test 
showed, when fusing the confusion matrices, a signifcant re-
sult (χ2(3) = 8.784, p = 0.032, N = 16) leading to a signifcant 
Wilcoxon test in Arm Length Normalization vs. Height Normaliza-
tion (W = 55, Z = −2.680, p < 0.037, r = 0.084). 

An investigation of all other groups did not lead to any other 
statistically signifcant efects of body normalizations on the identi-
fcation rate. 

We also tested the distribution of the acquired scores (Archery: 
total hit pins per participant, Bowling: total hit targets per partic-
ipant) for the task-based scenarios regarding the imposed body 
normalizations to understand whether user performance was im-
pacted by the imposed normalization. A Friedman test showed no 
signifcant diferences (Archery: (χ2(3) = 0.514, p = 0.916, N = 16), 
Bowling: (χ2(3) = 5.905, p = 0.0116, N = 16)). 
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Figure 6: The confusion matrices for the best performing 
models: (a) Archery with feature set F3, imposed Height Nor-
malization and a recurrent model and (b) Bowling for fea-
ture set F2 with Height Normalization and a recurrent model 
(cf., Table 1). 

6.2 Interviews and TLX 
After each task we asked the participants to fll out a Raw NASA 
TLX questionnaire (cf., Figure 7). Participants mostly rated both 
scenarios equally in all categories and subsequent Wilcoxon tests 
for each category could not show any signifcant diferences. 

In the semi-structured interview conducted after the study, par-
ticipants were asked questions about their experience with the sce-
narios during the study as well as how they perceived the changes 
to their virtual body, if they noticed it at all. We asked them to rate 
how well they liked each scenarios on a scale from 1 to 10. The 
average score for Archery yielded 8.75 (SD=1.11); Bowling achieved 
with 7.93 (SD=1.22) a slightly lower score. 
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Figure 6: The confusion matrices for the best performing
models: (a) Archerywith feature set F3, imposedHeight Nor-
malization and a recurrent model and (b) Bowling for fea-
ture set F2withHeightNormalization and a recurrentmodel
(cf., Table 1).

6.2 Interviews and TLX
After each task we asked the participants to fill out a Raw NASA
TLX questionnaire (cf., Figure 7). Participants mostly rated both
scenarios equally in all categories and subsequent Wilcoxon tests
for each category could not show any significant differences .

In the semi-structured interview conducted after the study, par-
ticipants were asked questions about their experience with the sce-
narios during the study as well as how they perceived the changes
to their virtual body, if they noticed it at all. We asked them to
rate how well they liked each scenarios on a scale from 1 to 10.
The average score for Archery yielded 8.75 (SD=1.11) ; Bowling
achieved with 7.93 (SD=1.22) a slightly lower score.
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Figure 7: Results of the Raw NASA TLX that was filled out
by the participant after each block in the study.

Furthermore, we asked participants if they felt that something
was off or if they perceived that some factor of the environment
was changing during their interaction. Out of 16 participants only
four noticed some sort of change that was imposed by the given
conditions. Two participants reported to have realized this change
during the Bowling scenario and another two during Archery. How-
ever, three more participants mentioned that they felt the changes
after we told them that we modified their body representation. In
sum, less than half of the participants noticed any change.

Only one participant stated they would not like to have that
kind of arm and height changes, the others did not oppose the idea.
Finally, some interesting remarks were made during the study: One
participant suggested they would be able to see the changes clearly
if they could see the full virtual body including legs, and arms in
the scenarios, not just the hands. Another participant stated that
due to a lack of a reference point, it was difficult to notice a change:
“I did not realize any change as I focused on the target”. On the
other hand, one participant noticed the change and mentioned: “I
felt that I do need to bow further down to pick up the [bowling]
ball”.

7 DISCUSSION
We first discuss identification accuracy, continue with the impact
on body normalization, and implicate the effects on deep learning.

7.1 Identification Accuracy
From the given results (cf., Table 2), it is apparent that body nor-
malization has a strong effect on the identification rate and that
identification is in general possible (RQ1). Archery peaks at a rate
of 0.90 in feature set F3, followed by Bowling at a rate of 0.68 in F2.
Both utilize a recurrent model. Without the imposed normalization
and the same feature sets and models, the accuracies are 0.63 for
Archery and 0.58 for Bowling; hence, we see an increase of 27 and 10
percentage points, respectively. This identification rate is achieved
by the deep learning model validating the data of the second day of
the study, while it had been trained with the data from the first day.

Figure 7: Results of the Raw NASA TLX that was flled out 
by the participant after each block in the study. 

Furthermore, we asked participants if they felt that something 
was of or if they perceived that some factor of the environment 
was changing during their interaction. Out of 16 participants only 
four noticed some sort of change that was imposed by the given 
conditions. Two participants reported to have realized this change 
during the Bowling scenario and another two during Archery. How-
ever, three more participants mentioned that they felt the changes 
after we told them that we modifed their body representation. In 
sum, less than half of the participants noticed any change. 

Only one participant stated they would not like to have that 
kind of arm and height changes, the others did not oppose the idea. 
Finally, some interesting remarks were made during the study: One 
participant suggested they would be able to see the changes clearly 
if they could see the full virtual body including legs, and arms in 
the scenarios, not just the hands. Another participant stated that 
due to a lack of a reference point, it was difcult to notice a change: 
“I did not realize any change as I focused on the target”. On the 
other hand, one participant noticed the change and mentioned: “I 
felt that I do need to bow further down to pick up the [bowling] 
ball”. 

7 DISCUSSION 
We frst discuss identifcation accuracy, continue with the impact 
on body normalization, and implicate the efects on deep learning. 

7.1 Identifcation Accuracy 
From the given results (cf., Table 2), it is apparent that body nor-
malization has a strong efect on the identifcation rate and that 
identifcation is in general possible (RQ1). Archery peaks at a rate 
of 0.90 in feature set F3, followed by Bowling at a rate of 0.68 in F2. 
Both utilize a recurrent model. Without the imposed normalization 
and the same feature sets and models, the accuracies are 0.63 for 
Archery and 0.58 for Bowling; hence, we see an increase of 27 and 10 
percentage points, respectively. This identifcation rate is achieved 
by the deep learning model validating the data of the second day of 
the study, while it had been trained with the data from the frst day. 
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For Archery, only one identity was misclassifed in more samples 
than it was classifed correctly (cf., Figure 6). Given the base chance 
of 1/16, i.e. ≈ 0.06 of correct classifcations we overall argue, that 
identifcation across several days is reliably possible when Height 
Normalization is employed. A statistical analysis (cf., Table 3) shows 
several signifcant increases in the identifcation rate due to the 
body normalization. 

We investigate the reasons for false classifcations by looking 
into the data and video recordings of Archery. P1 and P8 were par-
ticularly hard to classify (cf., Figure 6). To gain further insight, we 
visualize the normalized mean heights for this task (cf., Figure 5). Af-
ter also investigating the in-app recording that was created during 
the study, we could not fnd any apparent reason for the misclassif-
cation of P1. For P8, however, we found the reason for the deviations 
in the normalized height (compare negative outliers in Figure 5): 
the participant went into a crouched stance in the middle of the 
Archery task for three repetitions and thus shot arrows from a 
lower position. 

7.2 Impact of Body Normalization 
We believe that the normalization of the user’s height forces the 
deep learning model to adapt its learning process. Instead of rec-
ognizing diferent users by their physiology (i.e., height and arm 
length), we force it to focus on the subtle changes in behavior 
between participants. Hence, we would respond to our RQ2 by esti-
mating that physiological factors play a role in Behavioral Biomet-
rics, but removing them leads to a reduction in noise and, therefore, 
to an increase in identifability. 

Although we employed several precautions, such as a subtle 
fading between the repetitions of the scenarios, we cannot rule 
out the possibility that some participants noticed this change due 
to its appearance at some point in the study. From the interviews 
in the study, we have seen that less than half of the participants 
noticed the body normalization. We assume that an application 
with a higher degree of immersion and fdelity might hide the efect 
even better. 

7.3 Efects on Identifcation Systems 
With regard to the feature sets that can be used for identifcation 
through deep learning models, we assume that less data yields 
a bigger efect. Our best result for Archery was met in feature 
set F3, which corresponds to only the positional coordinates and 
rotation of the user’s controllers. As those are characterized as 
the vector from the controller towards the HMD, they implicitly 
bear information about the HMD; however, in comparison to the 
same result of Archery in F1 with Height Normalization in the 
recurrent model, the identifcation accuracy is increased by 21 
percentage points. Here, we estimate that an overall reduction of 
the data in a precision task such as Archery is benefcial for the 
recognition rate and can result in a large positive efect. Although 
this does not directly translate to Bowling, the diference of only 
four percentage points appears minimal (i.e., Bowling in F1 with 
Height Normalization and the recurrent model at 0.62 vs. Bowling 
in F3 with Height Normalization and the recurrent model at 0.66). 

8 CONCLUSION 
In this work, we show that implicit identifcation of users in VR 
through their spatial motion data (which can be captured through 
a consumer-grade head-mounted display) is possible, given that 
we achieved an identifcation rate of up to 90% across several days. 
We show and evaluate identifcation performance in two diferent 
scenarios in a user study with 16 participants. Furthermore, we 
provide insight into the performance of four diferent feature sets 
and show that a reduction and normalization of data leads to a 
higher identifcation accuracy by a deep learning classifer. More-
over, we explore the concept of body normalization by virtually 
altering the heights and arm lengths of the users. By normalizing 
the body proportions of all participants, we were able to show that 
this improves the accuracy of the classifer. We believe that body 
normalization can improve future identifcation systems in VR. 
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