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ABSTRACT
Identifying users of a Virtual Reality (VR) headset provides design-
ers of VR content with the opportunity to adapt the user interface,
set user-specific preferences, or adjust the level of difficulty either
for games or training applications. While most identification meth-
ods currently rely on explicit input, implicit user identification is
less disruptive and does not impact the immersion of the users.
In this work, we introduce a biometric identification system that
employs the user’s gaze behavior as a unique, individual charac-
teristic. In particular, we focus on the user’s gaze behavior and
head orientation while following a moving stimulus. We verify our
approach in a user study. A hybrid post-hoc analysis results in an
identification accuracy of up to 75 % for an explainable machine
learning algorithm and up to 100 % for a deep learning approach.
We conclude with discussing application scenarios in which our
approach can be used to implicitly identify users.

CCS CONCEPTS
• Human-centered computing→ Interaction techniques; Virtual
reality; • Security and privacy→ Usability in security and privacy.
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1 INTRODUCTION
As Virtual Reality (VR) headsets proliferate, their sensing capabili-
ties also improve. While first generations of devices mainly used
hand-held controllers for input, head-mounted displays (HMD),
nowadays, increasingly include eye tracking capabilities (e. g., the
HTC Vive Pro Eye or the Pico Neo 2 Eye) as an additional in-
put modality. Moreover, eye tracking is added to HMDs to enable
foveated rendering, an approach that renders less detail outside of
the area that users fixate their gaze on to save computational re-
sources [34]. Although games are currently the main driving factor
for VR headsets, more serious applications are gaining importance
such as education [36], training [40], or collaboration [6]. This
multitude of applications results in devices being shared among
multiple users. Thus, understanding who is currently using the
device becomes an important challenge. This can be either used to
authenticate users and permit access to confidential information or
to identify users and personalize the experiences.

The use of behavioral biometrics is a promising method for both
use cases since they can be applied implicitly in the background
without interrupting the user through actions they would “carry
out anyway” [17]. While body movements have been in the focus
of previous research on behavioral biometrics in VR [22, 25, 35, 41],
gaze has not yet received considerable attention. Virtual Reality
bears unique benefits for gaze-based identification, such as highly
controllable brightness within the enclosed HMD and less diversion,
as the eyes are shielded from the outside world.

In this work, we present a novel gaze-based behavioral biometric
method that enables implicit identification in VR. We utilize the
individual eye gaze behavior that occurs when users follow an
accelerating stimulus with their eyes. In particular, we use the
velocities and characteristics of how the user switches between
different gaze types, as well as head orientation characteristics.

We evaluate our approach in a lab study (N=12) and were able
to identify users with a cross-validated accuracy of 75 % in an
explainable machine learning approach and with an accuracy of up
to 100 % in a deep learning approach.We envision that this approach
can be integrated in games and serious applications to identify the
current user. As this identification scheme can be implemented in
an implicit manner, it also establishes a zero-cost layer of additional
security when used for authentication.

https://doi.org/10.1145/3489849.3489880
https://doi.org/10.1145/3489849.3489880
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The contribution of this work is two-fold. First, we present a
new type of behavioral biometric that exploits differences in users’
gaze behaviors for identification. Second, we report on a user study
(N = 12) that evaluates the general feasibility of the approach.

2 RELATEDWORK
We discuss identification and authentication approaches utilizing
gaze and taking place in Virtual Reality.

2.1 Identification andAuthenticationwith Gaze
Gaze-based authentication is an established topic that has been in
the focus of research for the last 20 years. While early approaches
in this field have enabled knowledge-based authentication with
gaze as an input modality, successfully preventing shoulder-surfing
attacks (e. g., dwell-time based PIN entry [5, 21]), more recent ap-
proaches tend to utilize the actual behavior of the gaze. For instance,
the complex patterns and characteristics of fixations and saccades
form a biometric trait [14]. This can be used, for example, to de-
rive information about a user’s identity during a reading activity,
as the captured information is highly individual [13]. In a more
abstract way, the reflexive movement of the eyes as a reaction to
a moving stimulus is also usable for the purpose of identification
and authentication [42]. Rigas et al. have shown that saccadic eye
movements are also individual, as their vigor and acceleration differ
from user to user [37]. Furthermore, recent research has looked
into the concept of using the eye tracker’s calibration data for the
means of identification [18].

For Virtual Reality, Khamis et al. employed smooth pursuit move-
ments as an interaction technique in virtual reality to enter a
knowledge-based component such as a PIN [20]. Alike, Mathis
et al. have developed “RubikAuth”, a fast and secure authentication
mechanism in Virtual Reality that employ gaze, head pose and con-
troller tapping [29, 30]. Current research directions and an extensive
overview of the state-of-the-art is also provided by Katsini et al. in
their work on the role of eye gaze in security and privacy applica-
tions where they highlight implicit gaze-based authentication to be
one key research direction [19]. One of the proposed research direc-
tions was explored by Niitsu and Nakayama by measuring effects
based on time and presentation size for biometric identification [32].
However, while gaze-based identification and authentication has
been explored rather frequently, to our knowledge, the feasibility
of the approaches in Virtual Reality is an underexplored topic, as
only a small number of approaches has been validated in VR.

It is important to note that, in gaze-based authentication, only
the approaches that are associated with biometrics can be employed
in an implicit authentication. Implicit authentication is a form of
authentication that does not interrupt the user’s interaction and
is performed through actions that the user would carry out any-
way [17]. They can, in general, add a zero-cost layer of additional
security but their error rate might make it necessary that another
form of authentication should be requested from the user.

2.2 Identification and Authentication in VR
Nowadays, most methods for authentication in VR still use a hand-
held controller-based PIN, password entry, or pattern lock, all of
which are derived from mobile devices [47]. However, George et

al. have shown that such traditional authentication methods are
inherently insecure for usage in VR, as up to 18% of the authen-
tication attempts can be breached by someone shoulder surfing
the controller input motion [12]. As the VR user is immersed in
the virtual world, they cannot perceive their environment or the
potential shoulder surfer that observes the input motion. Moreover,
these approaches, similar to most knowledge-based methods form
explicit authentication schemes that place the workload on the user
to remember their PIN or password and which require time to be
entered [12].

This conflicting situation substantiates the need for new ap-
proaches to identification and authentication in VR. Pfeuffer et
al. have shown that body motion and body relations can be used
for authentication [35], which is a pure biometric method. Anal-
ogously, the head and movement patterns that can be collected
from the HMD also form means of biometric identification [31, 41].
Furthermore, knowledge-based methods exist for VR, such as 3D
passwords [2] and multi-modal techniques that employ gaze and
head orientation to improve the usability and observation resistance
of such 3D passwords [11]. More complex task behaviors, such as
motions associated with certain interactions (e. g., throwing a ball
at a target), also bear a large amount of individual information [22]
and it has been shown that these principles can be extended to
other interactions [25].

Equipping an HMD with eye tracking provides further oppor-
tunities. Luo et al. have shown that electrooculography can be
integrated into an HMD, using the complete human visual system
as a physiological biometric [28]. In addition, Boutros et al. utilized
the images that the cameras of the integrated eye tracking unit
of the HMD had collected in order to generate iris and periocular
biometrics [4].

Summarizing, one can state that the field of applicable authenti-
cation schemes in VR is very diverse, ranging from pure knowledge-
based methods [47] to multimodal methods that employ biometrics
besides knowledge-based components [11] to pure biometric meth-
ods [22]. Nevertheless, the unique benefits of implicit authentica-
tion such as being transparent to the user and reducing the user’s
workload [17] can primarily be associated with pure biometric
authentication schemes. Here, in particular, gaze-based authenti-
cation seems to increase in importance [19], as eye trackers are
more frequently included in HMDs and the stable and controllable
brightness conditions within the HMD form a suitable environment.

3 CONCEPT
The core concept of the presented system is to exploit differences in
gaze behavior, in particular the gaze velocity. The velocity of gaze
is directly dependent upon the speed of a stimulus that is being
followed with the eyes (cf., Figure 1). A fixation occurs when a
user stares at an unmoving stimulus [44]. When the stimulus is
slowly moving, but it can still be easily followed with the eyes, it
induces a smooth pursuit movement [3]. Once the target stimulus
exceeds a certain speed, the user can no longer follow it using
smooth pursuit eye movements. The eyes then switch to a saccadic
movement [3]. Once a certain threshold of velocity is surpassed, or
when the stimulus leaves the field of view, a rotation of the head
becomes necessary to keep track of the stimulus.
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Figure 1: The two stimuli and their trajectories. The outer
trajectory exceeds the field of view of the HMD, requiring a
head rotation to follow it, whilst the inner trajectory stays
within these bounds at all times.

Besides the head rotation, we exploit the individual gaze behavior
as a biometric trait that is dependent on a visual stimulus. The
behavior of eye gaze is a highly individual trait and differences
in gaze exist across persons, up to a level of being able to predict
personality traits from gaze behavior [15]. Previouswork has shown
that the response of the human body to a given stimulus can result
in highly different outcomes, even if the applied stimulus is the same
across different persons [7, 38]. This allows to distinguish different
users by employing the concept of “functional biometrics” [26]. In
case that no implicit identification is possible for any reason, an
escalation to an explicit method always is a possibility.

To demonstrate the usefulness of our approach, we outline three
application scenarios that show how the presented concept can be
applied to real world scenarios. The stimulus within each scenario
elicits the required gaze behavior for implicit identification.

360° Movies. Movies and videos often contain objects that
accelerate, which can be used as stimuli for identification.
Here, an example might be nearly any kind of ball sport in
which the ball moves on the screen. Similarly, any object that
moves within a scene might easily be utilized (e.g., planes,
birds).

Games. Games in VR contain objects that move in the virtual
world. One example is an object (e. g., a plane or a bird) in
a virtual environment that moves across the sky at either
varying speed or at an oblique viewing angle. When the user
looks at these objects, the perceived change in motion can
induce gaze behavior which could be employed to continu-
ously identify the user.

Applications. User interfaces for virtual reality can be de-
signed in such a way that they include moving stimuli. For
instance, sending an email could involve a visual display of
the message being folded and placed in an envelope that then
flies away to communicate the sending progress. Loading
bars that are followed by the user’s eyes could also be em-
ployed for the same purpose, to implicitly elicit the wanted
gaze behavior.

4 EVALUATION
We conducted a lab study to verify our proposed approach in Virtual
Reality using gaze and head orientation behavior. To validate the
approach, we implemented a K-Nearest-Neighbors-based algorithm
based on summary statistics to classify the participant’s gaze data
and a deep learning model operating on raw data generated by the
eye tracker.

4.1 Stimulus
In this work, we evaluate two stimuli that are represented by a
white sphere that has a second black sphere at its core (cf., Figure 1),
a composition which follows the design of Lohr et al. [27]. The
VR users are located in a virtual space that is surrounded with
light-grey walls to avoid any distraction and the stimulus is located
exactly one virtual meter in front of them. To avoid any change in
distance, the positional tracking of the HMD is disabled, and thus,
only rotational tracking is available (i. e., three degrees of freedom
are available).

4.1.1 Stimulus 1. The first stimulus consists of the sphere moving
counterclockwise on an elliptical path. The path of this sphere
always remains within the field of view of the HMD and is defined
by a major axis of 3 meters and a minor axis of 1 meter. Over a
time span of 40 seconds, the sphere constantly accelerates. The first
completion of the path takes 5 seconds (72 deg/s), while the last
completion of the path takes only 1.4 seconds (257 deg/s).

4.1.2 Stimulus 2. The second stimulus is identical to the first stim-
ulus except for the fact that the elliptical path is modified. Here,
it has a major axis of 4 meters, and thus, it does not fit within the
HMD’s field of view. To follow this stimulus at all times, a rotation
must be imposed on the HMD, as the stimulus will otherwise leave
the field of view. The maximum speed remains unchanged, but
the acceleration is adapted to the increased length of the path in
comparison to stimulus 1.

4.2 Participants
We invited 12 participants through our university’s mailing list (2
female and 10 male, aged from 21 to 28 with a median age of 25).
Out of the 12 participants, 5 stated that they had normal vision and
7 stated that they had corrected to normal vision. One participant
used contact lenses during the study, while six others used prescrip-
tion glasses. The other participants stated that their vision would
not hinder them in their participation or interfere with the study.

Out of the 12 participants, only 11 participated in the full proce-
dure, as one participant had to abort the study due to acute cyber
sickness. We exclude this participant’s data from further processing
since the recording is incomplete.

4.3 Ethics
One of the purposes of the proposed system is identification. If this
system is employed in practice, it would be highly important to
inform the users of the system of the implicit collection of gaze
and head orientation data and to obtain the users’ consent. Fur-
thermore, it is recommended that all VR applications follow ethical
development standards [1].
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To protect the privacy of our study participants, we have assigned
their data pseudonyms at the time of recording. After finishing the
analysis of the data we have deleted the corresponding mapping
of the participants’ true identity to the given pseudonyms so that
their true identity cannot be derived from elements in the data set.

4.4 Study Design and Procedure
After the participants arrived in our lab, we obtained their informed
written consent, explained the procedure and fully answered all
questions. Participants could abort their participation at any time
without any detriments. Our study design follows a within-subject,
repeated-measures paradigm. Each recording session began with a
manual adjustment of the eye tracker and its associated parameters.
We set 400 × 400 px as the eye tracker’s resolution and 120 hz as
the eye tracker’s sampling rate. We then manually adjusted the
region of interest to where the pupil was located and performed
the vendor’s calibration routine. After the eye tracker was set and
ready for recording, we conducted three repetitions of stimulus 1
followed by three repetitions of stimulus 2.

The study procedure took approximately 20 minutes in total.
The participants were asked to sit on a chair in a 3×6 m room. The
light in the room was dimmed and the blinds were closed, although
the HMD itself already shields the participant from light sources
within the environment. With the help of the experimenter, the
participants placed the HMD on their heads and adjusted the straps
and interpupillary distances.

4.5 Apparatus
We used the HTC Vive Pro as our HMD. It is equipped with one
display per eye, where each display has a resolution of 1440×1600 px.
The field of view is 110◦ and offers a display refresh rate of 90 hz.We
equipped theHTCVivewith the binocular eye tracking add-on from
Pupil Labs1. This add-on consists of two infrared cameras mounted
near the HMD’s lenses. It operates at an adjustable sampling rate of
120 to 200 hz and a resolution of 192×192 px to 400×400 px, where
the highest resolution can only be chosen at the lowest sampling
rate, which we did for our study. We connected the HMD to a
workstation that was equipped with Intel Core i9 9900k CPU, 32
GB RAM, and an Nvidia 2080 GPU. We used Unity3D to implement
and execute the stimuli. To calibrate the eye tracker, we used the
default 16-point calibration routine of the “hmd-eyes” Unity plugin
provided by Pupil Labs2.

4.5.1 Gaze Classification. The Pupil Labs software stack provides
us with capabilities to binocularly record the gaze of the user that is
elicited as a response to the stimuli. Each recording consists of the
gaze point coordinates in a normalized coordinate frame together
with a confidence value. The confidence value is reported by the
Pupil Labs software and provides information about the degree of
confidence that the eye tracker has correctly estimated the gaze
point (i. e., a blink results in low confidence).

1HTC Vive Add-On. https://docs.pupil-labs.com/vr-ar/htc-vive, last followed on Octo-
ber 12, 2021.
2HMD Eyes. https://github.com/pupil-labs/hmd-eyes, last followed on October 12,
2021.

To generate features for classification from the given stream of
gaze data, we utilize REMoDNaV [9], which is an open-source soft-
ware library written in Python for classifying a stream of gaze data
and extracting high level features from it. With REMoDNaV, we
classify three types of gaze: fixations, smooth pursuits, and saccades.
We then collect six features for each: the onset time, the duration,
the amplitude, the peak velocity, the median velocity and the aver-
age velocity of the user’s gaze. Before supplying REMoDNaV with
the captured data, we filter the raw gaze data by a confidence value
of 0.4. We remove all data below this threshold by setting it to“NaN”
(“Not a Number”, e. g., data that was captured during blinks).

4.5.2 Head Orientation. Besides the user’s gaze, we also log the
rotational coordinates (x , y and z in Euler angles) from the HMD.
The data is captured as its change in value over time. Given the
rotational coordinates, we calculate the rotational peak velocity,
median velocity and average velocity to match the gaze features
captured by the eye tracker.

4.6 Classification
We use a K-Nearest-Neighbors method with k = 1 (“1NN”) as an
explainable machine learning classifier to classify the identities of
our participants in a post-hoc analysis. For the 1NN, we employ
summary statistics to aggregate the data into different features
per gaze type and for the head orientation. Furthermore, we also
classify the raw gaze and rotation data with deep neuronal networks
(“DNN”).

4.6.1 Data and Features. First, given the output of our gaze clas-
sifier, REMoDNaV, and our head orientation feature extractor, we
create an aggregation of the data that consists of 21 features for
the remaining 11 participants. A specific gaze behavior can, across
all participants’ data recordings, appear in varying amounts per
recording (e. g., one participant’s recording can have more detected
saccades than a recording from another participant). Yet, to cre-
ate a classifier, we need to unify the shape of the data so that all
recordings are data-wise comparable. We use the arithmetic mean
function as a summary statistics for the 1NN-approach to aggregate
the given features per data recording for each gaze feature.

To evaluate our approach, we strictly separate the first and sec-
ond stimuli and evaluate each on their own. Furthermore, from the
extensive set of 21 features, we only pick four features for further
analysis, following an univariate feature selection. These corre-
spond to the peak velocities of the four gaze and head movements
(i. e., fixations, smooth pursuits, and saccades, as well as the head
orientation in the case of the second stimulus).

We then split the data into a training set and a validation set.
The training data set consists of two repetitions of each participant
per stimulus and the validation data set consists of one repetition.
This results in a 2/3 training to 1/3 validation data split, where the
former consists of the first two repetitions and the latter of the last
repetition. We chose this split because we expect a learning effect
and fatigue to degrade the quality of the last recording. For the 1NN-
approach we decide to add one person to the “unknown identity”
class, i. e., designate the person as a negative that should be rejected
by the system.We cross-validate this person by picking each person
once as a true negative to simulate an open-set classification. For the

https://docs.pupil-labs.com/vr-ar/htc-vive
https://github.com/pupil-labs/hmd-eyes
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(b) Stimulus 2

Figure 2: Visualization of the KNN that classifies the user’s
identities for both stimuli. For better visibility, we only de-
pict the smooth pursuit and saccade peak velocities (px/deg)
on a log scale.

deep learning evaluation, we on the other hand opt for a traditional
closed-set classification and do not assign an unknown identity,
as only little literature exists with relation to deep learning-based
open-set classification and biometrics [33].

4.6.2 K-Nearest-Neighbors. At the core of our system, we employ
a modified K-Nearest-Neighbors algorithm with k = 1 (1NN) for
classifying the elicited data from the participants and to distinguish
their identities. Our modification of the KNN consists of the in-
clusion of a threshold to enable the KNN to determine negative
matches (i. e., true negatives and false negatives). This threshold is
a positive number that acts as the upper bound for the distance that
may exist between two neighbors in order for them to be recognized
as neighbors and form a positive match (i. e., true positives and false

positives). If the distance between two close neighbors falls below
this threshold, they form a positive match (i. e., an acceptance by
the system). If the distance between two close neighbors is equal
to or greater than the threshold, they form a negative match (i. e., a
rejection by the system). Therefore, in our system, an acceptance
is met when the equation euclidean_distance(P1, P2) < threshold
is true, where P1 and P2 are two neighboring points. A rejection
applies in all other cases (i. e., when the equation results in false).

To determine the optimal threshold, we tested each distance
within the KNN as a threshold and calculated the accuracy for each
once we validated our data set. In the end, we chose the threshold
that yielded the highest accuracy.

4.6.3 Deep Learning. For the classification of raw gaze and head
orientation data through deep learning we first combine the raw
gaze data with the head orientation data. As the eye tracker captures
data at 120 hz but the Unity prototype runs at 90 hz and thus the
head orientation is also captured at 90 hz, we first resample the
head orientation data from 90 hz to 120 hz to match the gaze data.
Next, as we do not employ summary statistics but raw data here,
we interpolate the gaze data linearly when its confidence drops
below 0.4 (e. g., at blinks or tracking-losses) to keep the time series
and the relation to the head orientation data intact.

In the next step, we center the mean of the head orientation
data to +0.5 to fit it into the interval of [0, 1]. We also clip the eye
tracker’s captured coordinates (“norm_pos_x” and “norm_pos_y”)
to the same interval. This way, we obtain time-series samples that
consist of five dimensions over time (“norm_pos_x”, “norm_pos_y”,
“rot_x”, “rot_y” and “rot_z”). Then we unify its shape through the
application of a zero-based prepadding.

The last step of the preprocessing of the data is implemented
through the “window slicing technique”, a popular method used in
time-series classification [23]. The deep learning models are trained
and validated on slices of the actual raw gaze and head orientation
data that are obtained from a window that has a certain size and
that is moved across the stream of data in the dimension of its time
axis at a given stride. Through a parameter search we determined
a window size of 300 and a window stride of 150 as optimal values.
Each sample (i. e., each recording from the study) of 40 s is therefore
sliced into 60 new samples, where each sample has a new length of
2.5 s of data. An overlap between each predecessor and success of
50 % is given by the chosen stride. The original classified identity
can be reconstructed by applying a majority vote to the classified
slices of data.

The actual classification is then performed through ten deep
learning models that are proposed by Fawaz et al. in their review
paper on time series classification [10]. We employ their exact
model definitions and Keras-based implementation3, as well as
their chosen hyperparameters such as learning rate, optimizer and
other parameters to enable seamless comparability and validate the
training in a 3-fold cross-validation, where each gaze recording is
used for validation once.

The utilized model architectures are a Time Convolutional Neu-
ral Network (“Time-CNN”) [48], Multi Layer Perceptron (“MLP”)
[46], Fully Convolutional Neural Network (“FCN”) [46], Residual

3Deep Learning for Time Series Classification. https://github.com/hfawaz/dl-4-tsc, last
followed on October 12, 2021.

https://github.com/hfawaz/dl-4-tsc
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Network “ResNet” [46], “Encoder” [39], Multi-scale Convolutional
Neural Network (“MCNN”) [8], Time Le-Net “t-LeNet” [24], Multi
Channel Deep Convolutional Neural Network (“MCDCNN”) [49],
Time Warping Invariant Echo State Network (“TWIESN”) [43] and
InceptionTime (“Inception”) [16] following the implementation of
Fawaz et al. [10]. The full training and evaluation of all models
of the deep learning evaluation took approx. 48 hours on three
NVIDIA A40 GPUs in a concurrent execution.

4.7 Results
The results of the explainable 1NN-classifier and the deep learning
approach are presented in the following. While the deep learning
operating on raw data surpasses the summary-statistics-based 1NN
in terms of accuracy, the latter is able to provide valuable insights
due to its explainability (cf., Figure 2). Furthermore, the elicited
data set is available online4.

4.7.1 Results for K-Nearest-Neighbors. The results that we obtained
from our 1NN-classifier are listed in Table 1. Figure 2 depicts two
of the features for all participants and recordings (saccade peak
velocity and smooth pursuit peek velocity). For stimulus 1, that
corresponds to trajectory 1 (cf., Figure 1), where the stimulus does
not leave the field of view. We reach a mean accuracy of 45 %,
following an 11-cross-validation of the unknown person. In this
cross validation, each participant’s data once was marked as a
negative. At best, we can report an accuracy of 55 %, consisting of
6 true positives (TP) and 5 false positives (FP) at a threshold value
of 7.77 for stimulus 1.

For stimulus 2, which follows trajectory 2 and exceeds the HMD’s
field of view, we reach an 11-cross-validated mean accuracy of 75 %.
In addition to the features of stimulus 1, we add the head’s peak
rotational velocity to the feature set. Here, we can at best report an
accuracy of 82 %, which is the result of 8 TP, 1 FP, 1 TN and 1 FN at
a threshold value of 17.78.

4.7.2 Results for Deep Learning. Table 2 lists the results for the
deep learning classifiers. With exception of the MCNN and t-LeNet,
all models have converged and yielded high accuracy ratings of the
classified data. The best model for the first stimulus is the “Encoder”,
resulting in a cross-validated mean of 0.9697 of the classified iden-
tites after performing a majority vote (cf., Figure 3). For the second
stimulus, the “Encoder” model is able to generate a cross-validated
mean accuracy of 1.0, as it met an accuracy of 1.0 in each of the
cross-validation cycles.

5 DISCUSSION
From the given results, it is apparent that gaze contains a high
amount of user-specific information. By achieving a cross-validated
accuracy of up to 75% following the 1NN and 100 % through deep
learning in the second stimulus, we show that our approach can be
used to identify users.

First, it is apparent that the inclusion of the head orientation data
in the second stimulus resulted in an increase in the identification
rate for both classifiers (45 % to 75 % for the 1NN and 96 % to 100 %
for deep learning). This is expected, as previous work exists that
is only based on head orientation in VR [31, 41]. Nevertheless, as
4The data set of this study is publicly available at https://research.hcigroup.de.
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Figure 3: Confusion Matrices for the first cross-validation
of Stimulus 1 utilizing the “Encoder” deep learning model
architecture. (a) The resulting classification of the slices of
gaze and head orientation data obtained from the window
slicing approach. (b) The application of a majority vote to
the slices of gaze and head orientation data leads to a classi-
fication accuracy of 1.0.

both classifiers show the same trend of an increasing accuracy,
we can conclude that the underlying data is more meaningful and
individual with the head orientation data being present. This can

https://research.hcigroup.de
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Table 1: Results of the 11-cross-validation of the negative for the 1NN. The feature set consists of themean peak velocity (mpv)
for the fixations (F), pursuits (P) and saccades (S). In the case of stimulus 2, we also add the head (H) orientation peak velocity.
We report the mean accuracy (acc.) gained through the 11-fold cross validation, as well as the best and worst accuracy ratings
encountered during the validation.

Stimulus Feature Set Best acc. Worst acc. Mean acc.

Stimulus 1 Fmpv , Pmpv , Smpv 0.55 0.36 0.45
Stimulus 2 Fmpv , Pmpv , Smpv , Hmpv 0.82 0.73 0.75

Table 2: Deep learning accuracies per model architecture per validation cycle in the 3-cross-validation and the obtained mean
accuracy (acc.). The accuracies for MCNN and t-LeNet are not listed as their accuracy did not exceed the random chance of
1/11 for each validation and the best cross-validated accuracy is marked in italic.

Stim. k-Fold Time-CNN Encoder FCN Inception MCDCNN MLP ResNet TWIESN

St. 1 1 0.9091 1.0000 0.9091 0.9091 0.9091 0.7273 0.9091 0.9091
2 1.0000 0.9091 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
3 0.9091 1.0000 0.7273 0.9091 0.9091 1.0000 0.9091 0.9091
mean acc. 0.9394 0.9697 0.8788 0.9394 0.9394 0.9091 0.9394 0.9394

St. 2 1 0.8182 1.0000 0.9091 1.0000 1.0000 0.7273 1.0000 1.0000
2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
3 0.8182 1.0000 1.0000 1.0000 0.9091 0.7273 1.0000 1.0000
mean acc. 0.8788 1.0000 0.9697 1.0000 0.9697 0.8182 1.0000 1.0000

be visually confirmed from Figure 2, where it is apparent that for
the second stimulus, the per-class clusters are less overlapping than
for the first stimulus. Further, an increase in velocity can be seen
in Figure 2(b) which is expected due to the enlarged trajectory of
stimulus 2.

5.1 Validation Accuracy in Deep Learning
The high classification accuracy of the deep learning classifiers
comes at the cost of explainability of the approach as well as the
immense required computational power that is necessary to auto-
matically craft the features that distinguish the users. In contrast,
the 1NN operates on summary statistics but does so in an explain-
able manner. The summary statistics that were applied to transform
the data for usage with the 1NN comes at the cost of losing infor-
mation, as they reduce the amount of information from each raw
gaze recording file (each having a size of approx. 4 megabytes) into
a set of three or four floating point numbers, in case of stimulus
1 and 2 respectively. This reduction comes at the cost of a loss of
information that is not present for the deep learning algorithms.
Nevertheless, both approaches work on the same underlying data
and a per-person similarity can already be visually derived from
Figure 2, as it is apparent, that local, consistent clusters per person
exist. In particular, k = 1 for the K-Nearest-Neighbors classifier
indicates that, as the classification of a point takes place by the
nearest neighbor only, the data is already strongly correlated and
clusters exist per participant, as otherwise the accuracy could not
live up to a rate of 75 %.

5.2 Limitations
We acknowledge the following limitations to our work. First, the
number of participants that took part in the study which resulted
in the presented results could have been higher, to determine the
true upper boundary of the deep learning algorithms for stimulus
2. While related work used similar sample sizes for their initial

investigations (e.g., 10 participants [38] or 13 participants [7]), a
larger sample size would have been useful to better understand
when the system starts confusing users with each other. As we
determined a mean accuracy of 1.0 for certain models, we are unable
to state when this accuracy starts to degrade, i. e., which number
of participants is necessary to mislead the deep learning models
for stimulus 2. Second, our data was only elicited during one day
per participant, similar to other explorations [7, 38]. Therefore, we
cannot conclude how “stable” this biometric is across days, as for
example fatigue has a strong influence on gaze [45]. On the other
hand we can clearly state that the data that was captured during the
study bears highly individual information, allowing to distinguish
the participants for the purpose of identification.

5.3 Explicit vs. Implicit Identification
Although we deem the investigated interaction to be suitable for an
inclusion within an implicit identification scheme, we have evalu-
ated it in an explicit way during a controlled lab study as this work
acts as a foundation to understand the feasibility of employing such
gaze behavior in Virtual Reality. Nevertheless, it is important to
investigate in future studies, to what extend the necessary time
frame for identification can be shortened at any given error rate
and how it would affect the individual components within the gaze
data. Also, by employing the approach in less controlled virtual
environments (such as in the described application scenarios), one
would need to keep track of the error that might be induced by each
participant, by, for example, simply not looking and focusing at the
desired stimulus. An employment as an implicit identification nev-
ertheless has the unique opportunities of designing the mechanism
in a way that is transparent to the user and could be executed in a
continuous manner, removing all workload from the user during
the process.
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6 CONCLUSION
In this work, we have presented a novel approach for identifying
the users of VR systems based on their gaze behavior elicited by
two moving stimuli, where one stimulus moves on an elliptical
path within the field of view of the user and the other stimulus
moves beyond that area. After capturing the user’s gaze on an HTC
Vive Pro with the Pupil Labs eye tracking add-on, we extracted the
peak velocity for the three most important types of gaze behavior
by applying the REMoDNaV gaze classifier [9] to the data. We
furthermore include the head orientation as another feature for the
trajectory in which the stimulus leaves the field of view and classify
the data by an explainable Nearest Neighbor classifier. Moreover,
we feed the raw data to in total ten different deep learning model
architectures. Here, the models can fully utilize their capability of
engineering the relevant features from the data on their own.

We have verified our approach in a user study (N=12) with 11
remaining usable data recordings. Following an 11-cross-validation
of the negative, we reached a mean accuracy of 75 % through a
modified K-Nearest-Neighbor classification algorithm with k = 1,
showing that implicit user identification is feasible and that the
data has a strong, individual component per participant. This ac-
curacy then is surpassed by the deep learning evaluation, which
yields a cross-validated accuracy of up to 100 % for multiple model
architectures taken from previous work.

We have explored the first steps towards a novel, implicit type
of identification that exploits differences in the user’s gaze and
head orientation which are captured in Virtual Reality. We show
that these individual components within the data are on one hand
explainable and on the other hand highly individual, given the
acquired accuracy rates of the classifiers. We show that the users’
gaze behavior and in particular the individual velocities the specific
types of eye movements have, is well suited for the purpose of
identification. To facilitate future research, we moreover release the
data set and we believe that the future of gaze-based identification
in Virtual Reality lies within the domain of implicit interactions
due to their unique properties of being transparent to the user.
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