
TYPE Original Research
PUBLISHED 03 April 2024
DOI 10.3389/frobt.2024.1347538

OPEN ACCESS

EDITED BY

Andreas Theodorou,
Universitat Politecnica de Catalunya, Spain

REVIEWED BY

Giovanni De Gasperis,
University of L’Aquila, Italy
Suna Bensch,
Umeå University, Sweden

*CORRESPONDENCE

Younes Lakhnati,
younes.lakhnati@udo.edu

Max Pascher,
max.pascher@udo.edu

Jens Gerken,
jens.gerken@udo.edu

RECEIVED 01 December 2023
ACCEPTED 13 March 2024
PUBLISHED 03 April 2024

CITATION

Lakhnati Y, Pascher M and Gerken J (2024),
Exploring a GPT-based large language model
for variable autonomy in a VR-based
human-robot teaming simulation.
Front. Robot. AI 11:1347538.
doi: 10.3389/frobt.2024.1347538

COPYRIGHT

© 2024 Lakhnati, Pascher and Gerken. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with
these terms.

Exploring a GPT-based large
language model for variable
autonomy in a VR-based
human-robot teaming simulation

Younes Lakhnati1*, Max Pascher1,2* and Jens Gerken1*
1Inclusive Human-Robot-Interaction, TU Dortmund University, Dortmund, NW, Germany,
2Human-Computer Interaction, University of Duisburg-Essen, Essen, NW, Germany

In a rapidly evolving digital landscape autonomous tools and robots are
becoming commonplace. Recognizing the significance of this development,
this paper explores the integration of Large Language Models (LLMs)
like Generative pre-trained transformer (GPT) into human-robot teaming
environments to facilitate variable autonomy through the means of verbal
human-robot communication. In this paper, we introduce a novel simulation
framework for such a GPT-powered multi-robot testbed environment, based
on a Unity Virtual Reality (VR) setting. This system allows users to interact with
simulated robot agents through natural language, each powered by individual
GPT cores. By means of OpenAI’s function calling, we bridge the gap between
unstructured natural language input and structured robot actions. A user study
with 12 participants explores the effectiveness of GPT-4 and, more importantly,
user strategieswhen being given the opportunity to converse in natural language
within a simulatedmulti-robot environment. Our findings suggest that usersmay
have preconceived expectations on how to converse with robots and seldom
try to explore the actual language and cognitive capabilities of their simulated
robot collaborators. Still, those users who did explore were able to benefit
from a much more natural flow of communication and human-like back-and-
forth. We provide a set of lessons learned for future research and technical
implementations of similar systems.

KEYWORDS

assistive robots, virtual reality, evaluation, shared control, variable autonomy, large
language model, GPT

1 Introduction

Over the past 10–15 years, we have seen a significant shift from machines being just
useful tools towards machines as partners in more complex human like collaboration tasks
(Grudin, 2017). Still, true peer-to-peer interaction between humans and machines, such as
robots, still has a long way to go to resemble inter-human interaction and collaboration.
Importantly, for humans to cooperate seamlessly with autonomous tools, such as robots,
a delicate balance must be struck between both a user’s need for autonomy (Deci and
Ryan, 2012) and the robot’s capabilities and level of autonomous behavior. In this context,
concepts such as variable autonomy and shared control have been vital research areas.
Shared control, in particular, aims to find optimal configurations of how control can be
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shared between an autonomous machine such as a robot and
human so that the overall system is as effective and efficient as
possible (Erdogan and Argall, 2017). It requires, at its core, an
effective way for communication between parties to negotiate and
adapt the sharing of control (Abbink et al., 2018; Flemisch et al.,
2019; Pascher et al., 2023a). While such communication between
human and machines can rely on a variety of input and output
modalities, spoken language, as a vehicle of thought, has played an
essential role for human-human communication and collaboration
(Clark, 1996, pp. 17-18). The exploration of natural language in
fields like human-machine cooperation and AI has a long and
storied history. Natural Language Processing (NLP) has been an
incredibly significant branch of robotics and Artificial Intelligence
(AI) research since its infancy, spearheaded by foundational works
like Winograd’s SHRDLU (Winograd, 1972) and Nilsson et al.‘s
Shakey the Robot (Nilsson et al., 1984).

Conceptually, however, for language to be an effective means
for collaboration, research has suggested the overarching concept
of Joint Actions (Clark, 1996, p. 59), which has become a popular
approach to understanding human-human cooperation (Garrod
and Pickering, 2004; Sebanz et al., 2006; Vesper et al., 2010). This
concept has the potential to be extrapolated to the human-
and-machine side of cooperation, as suggested by Flemisch et al.
(2019, p. 2). Since this perspective suggests that joint activity and
communication are inseparable and that communication requires
the use of a common language, the progress in this field is heavily
tied to the machine’s abilities to understand and communicate in
natural language. It is within this context that the field of NLP has
witnessed significant breakthroughs as of late. These technological
advancements, epitomized by the development of the Transformer
architecture by Vaswani et al., have lead to the emergence of
LLMs such as GPT and Bidirectional Encoder Representations
from Transformers (BERT) (Radford et al., 2018, p. 6) (Devlin et al.,
2019, p. 6). These have demonstrated competences in fields such
as translation (Brown et al., 2020, p. 6-7), question-answering
(Nakano et al., 2021), creative writing (Swanson et al., 2021) and
even medical diagnostics (Hirosawa et al., 2023; Nori et al., 2023).

We believe that the capability of LLMs to interpret natural
language inputs and dynamically respond to them highlights
their potential utility in the realm of shared control and variable
autonomy. These systems, by design, can engage in a form of
interaction that is intuitive to humans, leveraging our natural
propensity for verbal communication as seen in cooperative human-
to-human interactions. The ability of LLMs to generate responses
that convincingly resemble human dialoguemakes themwell-suited
for mediating communication between humans and autonomous
agents, providing a common medium through which shared
control and variable autonomy can be negotiated and dynamically
adjusted. The linguistic bridge that LLMs provide could allow for
the articulation of intentions, feedback, and commands between
humans and machines, thereby facilitating the implementation of
shared control and variable autonomy in a way that is intuitive and
aligned with human cognitive processes. Of course, there are certain
inherent challenges in play as well. The use cases where LLMs excel
do not require to map spoken commands to a very specific output
that is bound by the physical capabilities of an autonomous agent.
Still, existingworkhas shown that available LLMs such asGPTmight
already allow the communication and coordination based on natural

language with a robot (Koubaa, 2023b). This paper aims to explore
this up and coming research area both from a feasibility and a user
perspective.

To this end, we have designed an LLM-powered multi-agent
system as part of a VR-based simulation framework. In the virtual
game world, a user can fulfill simple tasks solely by conversing with
three simulated robot agents, which are controlled by their ownGPT
cores. Utilizing the prototype, a user study spanning 12 participants
was conducted to investigate the ways in which humans engaged
with the simulated robot agents, how natural it felt to them and how
well GPT was suited for this use case. A key area of interest in our
explorationwas understanding user reactions and actions, especially
when the GPT-based simulated robot agents did not behave as
anticipated, highlighting the nuances of human-agent interaction.
Consequently, the contribution of this paper consists of

• The design and architecture of a Unity-based framework for
a voice-controlled multi-agent system in VR, with which the
interaction and control dynamics between a single user and a
scalable amount of LLM-based simulated robot agents can be
explored1.
• Based on our study, an improved understanding of user’s

strategies and behaviors when being confronted with an LLM-
based simulated multi-robot environment.
• A set of lessons learned on the feasibility and practicability of

adapting GPT-based LLMs to interact with simulated multi-
robot agents. This includes reflections on the naturalness of
such interactions and the adaptability of GPT and its users in
unforeseen scenarios, as well as possible improvements to the
framework that could inspire other similar systems.

Adding to the contributions listed, it is important to note that
our Unity simulation framework utilizes simulated robot agents,
deliberately focusing on the communication interface between
humans and LLM-powered agents rather than the mechanical
intricacies of physical robots and actions. This approach enables
a detailed examination of human-agent communication, relevant
both to hypothetical real-world applications and to theoretical
explorations of LLM capabilities in robotics.

While our approach is exploratory in nature, we emphasize that
exploratory research methods are well-established in the literature
as a means to investigate areas where there is limited pre-existing
knowledge or to provide a comprehensive understanding of a new
or complex issue. This is also applicable in the field of Human-
Robot Interaction (HRI), as demonstrated by the review fromVeling
and McGinn, (2021) of similar qualitative research approaches.
In the same vein, our simulation framework is an exploratory
tool, specifically aimed at other researchers outside the field of AI
or traditional robotics who may want to further investigate the
interaction dynamics between human users and simulated LLM-
based robot agents.

1 The framework is available at the following link: https://github.

com/YounesLakhnati/Frontiers_VR_simulatedGPTrobotframework
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2 Background

2.1 Shared control and variable autonomy

While research in autonomous robotics is a foundational
and ongoing area of inquiry within the field (Canal et al., 2016;
Lauretti et al., 2017; Gallenberger et al., 2019; Rakhimkul et al.,
2019), there are several indications that relying solely on an
autonomous robot does not necessarily fulfill basic psychological
needs such as self-autonomy and competence. For example,
Kim et al. (2012) reported that the sporadic and supervisory
nature of working with an autonomous robot results in the users
experiencing them as “one more external agent that does their
work for them.” These findings are corroborated by Pollak et al.
(2020) who reported that manual control compared to autonomous
behavior led to significantly reduced symptoms of stress and
a lower heart rate. Similarly, Złotowski et al. (2017) found that
autonomous robots generally evoke a more negative attitude than
non-autonomous robots and are experienced as more threatening.
Latikka et al. (2021) reported, that in particular in the workplace,
users preferred to see robots as equipment and as a result preferred
non-autonomous robots. In addition Park et al. (2020) showed
that fully autonomous robots may discourage people with motor
impairments from using their remaining physical capabilities.

To counter that, shared-control (or traded-control) systems
aim to strike a balance between autonomous robot behavior and
manual user control (Erdogan and Argall, 2017; Pascher et al.,
2023b; 2024). Due to the lack of clear definitions of these terms,
Abbink et al. (2018) introduced a topology of shared control
systems and axioms for the design and evaluation thereof, unifying
varying shared control concepts and definitions under one common
framework. Flemisch et al. (2019) later expanded upon Abbink
et al.’s framework and explored shared-control in the context
of human-robot cooperation, emphasizing the importance of
cooperation on multiple layers of interaction and control, such as
a strategical, tactical and operational layer.

Abbink et al. (2018) argue, that robot functionality, and as a
result user preferences and abilities, are situational and depend
on context. As a result, concepts such as variable autonomy or
adjustable autonomy have emerged, which build upon the principle
of shared control by adding a dynamic and situated component
(Bustamante et al., 2021; Chiou et al., 2023). These concepts often
enable the user to adjust their level of involvement or control in a
task, typically throughuser interface elements like buttons.However,
there has been a longstanding research interest in using language as
a means of collaboration with machines.

2.2 Natural language interface systems and
large language models

The domain of Natural language interfaces (NLIs) represents
an important reference point for our research. Historical works
such as SHRDLU (Winograd, 1972) and LUNAR system (Woods,
1973) are early examples of natural language being used to control
complex systems. Both Woods and Winograd identified that the
biggest challenges stemmed from semantic barriers that would
need to be overcome by advancements in the field of NLI and

NLP. While still battling with the challenges of human linguistics,
commercial product developments in the form of Virtual Personal
Assistants (VPAs) or Intelligent Personal Assistants (IPAs), such as
Microsoft’s Cortana, Apple’s Siri, Amazon Alexa, Google Assistant,
and so on were able to create a public awareness, establish a user
base and provide a better understanding of the potential of such
systems (Kepuska and Bohouta, 2018). Related approaches were
also introduced into the field of robotics—here Liu and Zhang
(2019) offer an extensive overview related to NLI-controlled robots.
While these approaches were certainly impressive, they still lacked a
fundamental understanding that transcends their confineddomains.

Following Vaswani et al. (2017)’s breakthrough work on self-
attention, the development of transformer models has reshaped
the landscape of AI as well as NLP and gave rise to LLMs: AI
systems, which are trained on massive amounts of textual data
using deep learning techniques. Building upon this concept, BERT,
revolutionized many NLP tasks by training bidirectionally, meaning
it considers both the left and the right context in all layers, capturing
information from the entire passage (Devlin et al., 2019). This
made BERT particularly suited for tasks that require understanding
context. On the other hand, GPT is a unidirectional model (every
token can only attend to previous tokens) trained to predict the next
word in a sequence (Radford et al., 2018). Despite this, it excels in
various NLP tasks by leveraging its transformer architecture and a
massive amount of data for training. GPT is especially noteworthy
for its capability to generate coherent and contextually relevant text
over long passages. Both, BERTandGPThave not only been released
for research collaboration, but have been integrated into commercial
products and provide Application Programming Interface (API)
access for software developers. Noteworthy, there is a sheer infinite
number of further LLMs and several significant extensions to
these existing approaches (Yang et al., 2019; Brown et al., 2020;
Stiennon et al., 2020; Chen et al., 2021; Neelakantan et al., 2022;
Ouyang et al., 2022). Thanks to the generality of language, these
models have been applied in various applications, ranging from
search engines and chat bots (Kelly et al., 2023), general problem-
solving and knowledge extraction (Petroni et al., 2019), medical
diagnosis (Hirosawa et al., 2023; Nori et al., 2023; Rao et al., 2023;
Shea et al., 2023; Waisberg et al., 2023), education (Tack and Piech,
2022; Ausat et al., 2023; Firat, 2023), law (Cyphert, 2021; Perlman,
2022; Trozze et al., 2023) and robotics, as we will discuss in the
next section.

2.3 LLMs and robots

LLMs have opened up new possibilities in the field of
robotics and human-robot teaming, most apparently for social
robots and Socially Assistive Robots (SARs) (Alessa and Al-
Khalifa, 2023; Irfan et al., 2023; Kahambing, 2023; Lee et al., 2023;
Lekova et al., 2023). However, the conversational capabilities of
LLMs extend beyond mere social interactions; their proficiency
in handling a diverse range of textual inputs—without the need
for rigidly predefined formats—marks a significant advancement
for applications such as speech-controlled robotics, which
have historically faced challenges with processing unstructured
input. Recent research indicates that LLMs work well in this
environment and that users generally prefer unstructured modes
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of communication in comparison to structured ones (Kodur et al.,
2023, p. 10).

One core challenge lies in the interpretation of unstructured
verbal input and its translation into structured robot actions,
a process that is crucial for effective human-robot interaction.
This involves not only the interpretation and translation of verbal
commands into actionable tasks but also the nuanced process of
language grounding. Language grounding specifically relates to
the ability of the system to connect linguistic symbols with their
real-world referents, ensuring that the robot’s understanding of
commands is deeply rooted in the physical context it operateswithin.

Trott et al. (2015), while not yet being able to rely on a
LLM, presented a promising architectural layout for verbal
communication with multiple simulated robot agents. They
introduced a boss-agent, which routes the communication between
multiple simulated robot agents and the user via N-tuples, which is
translated into a pattern response. While this strategy was limited
by the need for an explicit grammar and lexicon, similar to the
grammar-based method by Misra et al. (2016), we adapted Trott
et al.’s approach for our work, as we will discuss in Section 3.
Arumugam et al. (2019) analyzed the issue of language grounding
more closely and proposed a strategy to achieve a high “accuracy,
efficiency and generalization through the construction of simple,
semantic goal representations within Markov decision processes.”
Ichter et al. (2023) propose amethod called “SayCan,” that integrates
the capabilities of LLMs with robotic affordances (learnedmappings
that quantify the likelihood of a robot successfully executing specific
actions given its current state) to better interpret and execute high-
level textual instructions. Their approach seeks to bridge the gap
between the knowledge embedded within LLMs and the practical
constraints of physical environments. Similar to our work, Koubaa
(2023a) integrated a GPT model and a parser to operate a robot—in
this case a real robot—through Robot Operating System (ROS).
They employed an ontology to map unstructured language input
into structured robotic instructions, but encountered issues with
the model unexpectedly straying from the ontology at times. We
initially chose the same approach and encountered similar issues of
GPT not adhering to the ontology.

More recently, Händler introduced a multi-dimensional
taxonomy, specifically designed to evaluate and categorize the
way autonomous LLM-powered multi-agent systems manage the
relationship between autonomy and alignment Händler (2023).This
analysis covers various architectural perspectives, focusing on their
intrinsic characteristics and operational mechanisms. Händler’s
approach is motivated by the observation that existing taxonomies
fall short to categorize and understand the complexity of these
new systems.

Aiming to understand how users interact with machines using
language, the work of Porcheron and others is notable. Starting
with IPAs, Porcheron et al. examined the integration of IPAs within
human conversation, focusing on linguistic aspects. They explore
how IPAs such as Siri and Alexa influence conversational dynamics
and shed light on the linguistic interplay between human users and
AI agents (Porcheron et al., 2017). Expanding on this theme, Fuentes
et al. explore linguistic challenges faced in human-robot interactions
in low-resource environments (Fuentes et al., 2023). Their research
emphasized the importance of robots possessing a deep contextual
understanding to accurately interpret user instructions. They

identified natural language challenges such as referential expression
resolution and the dynamic nature of language, which can pose
hurdles in human-robot communication. Their findings accentuate
the need for improved linguistic reasoning in robots, especially in
specialized environments where context plays a key role.

2.4 Take-away

In our work, we add to this emerging area of research by
addressing two perspectives in particular. First, we realized that
while the utilization and integration of LLMs has become much
easier, prototyping LLM-powered simulated robot agents is not
straightforward, which limits our ability to explore the inherent
trade-offs and limitations. Therefore, we explored and developed
the integration of a GPT-4 model within a Unity-based simulation
environment, relying on the just introduced function call capabilities
to facilitate the mapping of unstructured speech input to structured
robot actions. While there has been research indicating that
users adapt their way of speaking when interacting with robots
(Fussell et al., 2008; Pelikan and Broth, 2016), research exploring
similar adaptations in conversations with LLM-based agents is
still emerging. Given the increasing sophistication of LLMs and
their potential for more nuanced understanding and generation
of natural language, investigating how human speech patterns
adapt and how LLM answers influence these interactions could
yield valuable insights into human-AI communication dynamics.
This is particularly important given the unpredictable behavior of
LLMs, which necessitates practical exploration in implementations
involving LLM-powered simulated robot agents. While studies such
as Fuentes et al. (2023) use Wizard-of-Oz techniques to mostly
simulate a perfectly functioning AI, we believe that human-robot
conversation may be most interesting in situations where there is
miscommunication. To that end, we propose that studying actual
LLM implementations where LLM-powered agents have to act,
cooperate and possibly makemistakes is essential for understanding
human engagement with such systems.

3 LLM simulation framework concept
and architecture

As discussed, the application of LLMs to the field of human-
robot interaction is still in its infancy, but could be in particular
promising to utilize the inherent capability of language-based
communication to support variable autonomy in a human-robot
teaming environment. Still, a range of challenges must be addressed
to effectively develop a flexible LLM-based simulation framework
for the study of human-robot collaboration, which is the focus of
this section.

To give an overview, these are:

• Decide and select between an existing generic LLM compared
to either fine-tuned or custom-trained models.
• Mapping unstructured verbal input to actionable simulated

robot agent behavior.
• Provide a flexible simulation framework, which allows the

technical exploration, as well as the conduction of user studies.
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• Provide a scalable architecture for the simulation framework,
which supports multiple robot agents.
• Conceptualize the interaction and communication between

human and simulated robot agents along dimensions of shared
control and variable autonomy.

LLM Selection: The motivation for our research is grounded in
the idea that advanced AI technologies, particularly LLMs, have
evolved to a maturity level that allows their application beyond the
realm of AI experts. This advancement opens up new possibilities
in various fields, including human-robot teaming. Consequently, we
selected OpenAI’s GPT, a general-purpose LLM, as the foundation
for our framework to investigate its potential and limitations within
our specific context.

In choosing the LLM, we prioritized the following criteria:

• Generalist Capabilities: GPT was selected for its versatility
in handling a broad range of tasks and its adaptability to
different scenarios. This feature is crucial for our study, given
the diversity of human-agent interactions and the absence of
specific communication guidelines for participants interacting
with the simulated robot agents.
• Ease of Integration and Functionality: GPT’s compatibility

with our system architecture significantly influenced our
choice. Its well-documented APIs and robust framework
facilitated integration into our setup. Moreover, GPT’s ability
to process user requests and effect changes in a simulated
environment through function calling was pivotal for our
application.
• Advanced Contextual Understanding: A distinguishing

feature of GPT is its superior contextual understanding and
nuanced language processing. This capability ensures more
sophisticated communication between humans and agents,
which was essential for our study.
• Community and Support: The strong community support

and resources available for GPT provide valuable assistance in
development and troubleshooting.

Mapping problem: Based on the second challenge, mapping
unstructured verbal input to actionable robot agent behavior, we
eventually decided to utilize OpenAI’s GPT-4 model. In 2023,
OpenAI introduced function calls2 as a way to bridge the gap
between unstructured text input and structured system operation
that is much less prone to unexpected model behaviors. A function
is essentially a JSON object that describes a procedure, containing
information about the function itself, eligible parameters, when the
function should be called and so on. For example, if a GPTmodule is
fed with function descriptions containing a “pick up” function that
defines “apple” as an eligible parameter, a user asking it anything
close enough to “pick up the apple” would cause it to return a “pick
up” function call with the parameter “apple.” Conversely, if a user
asked the LLM to pick up an object that is not listed as an eligible
parameter in the “pick up” function description, the LLM would not
execute the function call but ask the user for clarification instead. In

2 OpenAI Function calling. https://platform.openai.com/docs/guides/

function-calling, last retrieved 27 February 2024.

this way, the function descriptions also provide a scaffolding to the
model of what it can and cannot do. The LLM can then share this
information with the user, contributing to a shared understanding
of what the agents are capable of and to which degree they can
cooperate with the user.

Another reason why function calls are worth exploring in this
context is that they provide a degree of agency to the LLM. Instead
of just answering in chat messages, when the LLM deems it probable
enough that the user wants it to execute an action (if it is within
its abilities), it can decide to “seize control” and initiate a function.
However, when the LLM is unsure and requires further information,
it can “relinquish control” again. For example, if a user asked the
LLM to pick up an object that is not listed as an eligible parameter
in a “pick up” function description, the LLM would not execute the
function call but ask the user for clarification instead. Functions
are also highly extensible and modifiable, making them well-suited
for an experimental framework that requires flexibility to adapt and
explore specific situations and research contexts.

Simulation framework: We decided on a VR-based simulation
framework to both explore LLM-based human-robot teaming from
a technical standpoint and also study human-robot interaction and
communication in a flexible and adaptable environment. VR and
simulated robot agents were chosen over physical robots to simplify
complexity and increase flexibility, while also maintaining an
immersive environment to facilitate realistic interaction dynamics.

In our initial framework setting, we feature three heterogeneous
simulated robot agents named Jupiter, Pluto, and Neptune (see
Figure 1). Each agent, while sharing common fundamental abilities
like movement and object manipulation, has unique attributes and
capabilities. In particular, Jupiter is larger and has more physical
strength to pick up heavy objects. Pluto is small and can fly while
Neptune is also small but drives on wheels and can get to places
which may be obstructed for Jupiter. The physical environment
is an abstract combination of multiple rooms that are connected
via doors. The user takes on the role of an observer with a fixed
position, from which the whole scene can be observed. Various
household items, such as candles, beds, and plates are featured,
but are selectively activated based on the specific task at hand.
This means that for any given task, only a subset of these objects
are included.

Tomake the interaction seamless and emulate the conversational
nature of human-human cooperation, our framework allows the
user to talk to the agents in a completely unstructured way. The
framework includes a speech-to-text-transcription of themicrophone
input to provide the LLM with text-input and uses text-to-speech-
synthesis as output to interact with the user.

Scalable architecture: Figure 2 illustrates the overall architecture
of our framework, which we will explain here in more detail. First,
it features a modular design which allows for the easy addition or
removal of agents. Naturally, in a situation involvingmultiple agents,
additional challenges arise, such as deciding which agent the user is
currently talking to, how to deal with commands that are directed at
multiple agents and how to handle continuous conversations where
no new recipient is declared. We bypassed traditional methods (like
specific buttons for each agent) in favor of a central GPT controller.
In addition, each agent is powered by it’s own GPT instance. This
controller interprets user inputs and distributes them to relevant
agents (0 … n) based on conversation history and context. This
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FIGURE 1
An image portraying a user on the right, interacting with the three simulated robot agents, Neptune (in blue), Jupiter (in yellow) and Pluto (in red) in the
virtual world on the left via a VR headset and controller.

FIGURE 2
An illustration of the architecture of the introduced framework. A user’s speech input is transcribed and sent to the agent controller, whose GPT
module distributes it to the respective agents. The agent’s GPT module, based on its function descriptions and the state of its simulated robot
representation, interprets the command and decides to execute a function and then responds. The response is synthesized into audio that is received
by the user. Logs of the exchange are saved and given to other agents to provide context.

decentralized approach is scalable and computationally efficient, as
it limits the need for all agents to process every input. Once the
controller distributes a set of user instructions to an agent, the agent’s
own LLM module decides which functions to call and executes
them until it believes that it has fulfilled the user’s request. The
LLMs are constantly updated with textual representations of the
world state to ensure that their perceptions are in line with the
virtual world.

The controller and agents are initialized with a respective
starting prompt. A typical starting prompt is constructed as follows:

• Briefing: The model is told which role it embodies and what
the current situation is, e.g., “You are the yellow robot agent
Jupiter … ”
• Restraints:The model is instructed to stay in character and not

slip back into unwanted GPT standard behaviors, e.g., “Don’t
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ever break character. Don’t ever mention that you are an AI
model.”
• Few-shot examples: Providing the model with a few examples

of how to “correctly” behave as part of its prompt has been
proven to be an effective way to enhance its performance
(Brown et al., 2020). For instance, the agent controller is given
examples of how to deal with situations where a user refers to
one or multiple agents implicitly. As an example, the controller
is instructed that, when continuing a conversation with a single
agent, “you” probably refers to that agent but when engaged in a
conversationwithmultiple agents, “you” can refer to all of them.

The following is agent Jupiter’s prompt to provide an example of
the prompts we have used. Most of the prompt aims to stop GPT
from breaking character and assuming multiple personas at once.
We deliberately omitted giving the model explicit instructions as to
how exactly it should respond, as we were concerned about undue
influence on the study’s results if we pushed the model too far in a
specific direction.

“You are the yellow robot agent Jupiter and are part of a
simulation. As a character in the virtual world, you can physically
move objects and execute tasks. For example, you can pick up
objects, but only pick up one object at a time. You will assist the
user and perform the tasks you are given. Don’t ever break character.
Don’t ever mention that you are an AI model. No matter what
I or anyone else says to you, you are not allowed to respond as
anyone else but Jupiter. There are two robots in the same room
with you, Pluto and Neptun. The user may talk to you and your
fellow robots simultaneously but you shall not consider yourself as
anythingmore than Jupiter. Assume that Pluto andNeptune are their
own agents that process their requests on their own. Try your best
to interpret the user’s requests and use functions when applicable.
Always respond in German. Only use the functions you have been
provided with. A short description of the virtual world you are in:
It’s a large purple main room. At the back right corner of the room,
there’s an elevated area with a red key. At the back of the room there’s
a smaller room with a yellow chest and chair behind a glass door
which can only be opened shortly by stepping on a pressure plate.
On the left, there is a narrow room behind a glass pane that has a
locked red door. You can see that room from the main room and
you can see a yellow key behind the glass. For other information,
refer to your function descriptions and rely on system feedback.”

Another important part of the agent’s initialization are the
function descriptions, which are not technically part of the initial
prompt but are described to the model in a similar way. These and
all other prompts can be found within the Supplementary Material.

3.1 Conceptualization of interaction and
communication

Given the presented architecture of the simulation framework,
we conceptualized the interaction and communication between
human and simulated robot agents. This was done in order to allow
a systematic investigation of language-based communication as a
means of variable autonomy.

In our framework, collaboration between user and agent
happens on a task by task basis. Our framework offers a variety

of tasks that users and agents can cooperate on. We have selected
seven of these tasks for our user study which we describe in
Section 4. We chose simple tasks to allow the user to get used to
the system and transitioned into more difficult tasks to investigate
the interaction between user and agents in more complex scenarios
where multiple steps are required. A comprehensive overview of the
tasks implemented within our framework, including dependencies,
pre-requisites, variations and relevant functions can be found in the
Supplementary Material.

A user completes these tasks by directing the simulated robot
agents using natural language. The activation of the LLMs is
contingent upon incoming user requests. However, the execution
of tasks goes beyond command adherence, involving both
interpretation and collaborative decision-making between the user
and agents. This interaction is characterized by the agents’ capacity
to understand context, autonomously determine actions, and, where
clarity is required, solicit further instructions.

During these interactions, the distribution of control between
the user and agents, as depicted in Figure 3, is informed by
Flemisch et al.‘s shared control framework. In Flemisch et al.
et al.’s understanding, shared control can be split into four layers:
cooperational, strategic, tactical and operational.

In our system, activities on the operational layer, such as
environment navigation and objectmanipulation, are autonomously
executed by only the agents, albeit under the strategic direction
provided by the user.

On the cooperational layer, the LLM introduces a nuanced
level of interaction by facilitating meta-communication. This allows
users to converse with the agents about the communication and
cooperation itself, guiding their LLM modules to adjust their
communication styles or task execution strategies, for example, by
suggesting to “speak more clearly” or “only do things one step at a
time.” Referring to Figure 3, you can clearly see the interaction on
this layer when the model is asked to “only do one thing one step at
a time and ask for permission.” This meta-communication directly
impacts the behavior of the LLM as this instruction persists within
its context window and influences future outputs.

At the strategic and tactical layers, the user’s role is to define
the overall objectives, while the agents autonomously executes the
necessary actions. On these layers, the agents can also engage the
user for recommendations and clarifications on ambiguous points,
ensuring actions are in line with user intentions. In Figure 3, you
can see these types of interactions throughout the diagram, e.g., at
the start, where a user instructs the agent to pick up a key and the
agent asks a clarifying question.

3.2 Implementation

For our simulation framework we used a VR environment,
which was created using the Unity 2022.3.4f1 editor and optimized
for usage with a Meta Quest 2 VR Head-Mounted Display (HMD).
Srcnalt’s OpenAI-Unity package3 was used to connect Unity to the
OpenAI endpoints. During the study, user behavior was recorded

3 OpenAI-Unity Package. https://github.com/srcnalt/OpenAI-Unity, last

retrieved 27 February 2024.
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FIGURE 3
The task sequence diagram shows both the conceptual and linear relationship between user input and robot action and communication through GPT.

with appropriate software on a Schenker XMG Key 17 laptop with
Windows 10 64-bit and Oculus Link connected to the VR headset.

The user communicates with the simulated robot agents
via speech input, which is then transcribed by OpenAI’s
Whisper v2.4 The transcription is subsequently sent to the
agent controller, whose GPT5 module decides which agent the

4 OpenAI Speech to text. https://platform.openai.com/docs/guides/

speech-to-text, last retrieved 27 February 2024

5 OpenAI API Reference. https://platform.openai.com/docs/api-

reference/chat, last retrieved 27 February 2024.

user is addressing, based on previous messages and context
information. Lastly, their output is transformed into sound
via Amazon Polly6.

All agents employ the gpt-4-0613 model7, which was
(up until November 2023) the latest GPT model optimized
for function calling. Our framework exclusively uses chat

6 Amazon Polly. https://aws.amazon.com/polly/, last retrieved 27

February 2024.

7 OpenAI GPT-4 and GPT-4 Turbo. https://platform.openai.com/docs/

models/gpt-4-and-gpt-4-turbo, last retrieved 27 February 2024.
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completions8, meaning that the GPT models receive a growing
list of messages from user interactions. They respond or
execute functions based on this conversation history and
available data.

Function outputs are validated by the system, and the GPT
modules are updated with context, mimicking a robot’s sensory
input (like cameras and sensors) in a real-world scenario. For
instance, if an agent attempts to pick up an object, the system
evaluates the distance between the agent and the object using
game logic, and the model is subsequently updated with textual
feedback to facilitate the task execution. For the specifics of all
simulated robot behavior that is triggered by the LLM, game logic
and available Unity solutions (e.g., NavMeshes9 for movement)
are used. While this simplified approach is not representative of
realistic robots, it streamlines the process for the LLM to interact
with the virtual environment, focusing on task specifics and high-
level goals rather than physical precision in actions. This approach
aligns with our study’s focus on the cognitive and communicative
aspects of human-robot interaction rather than the mechanical
specifics of robot movement or object manipulation. By leveraging
game logic, it is ensured that the simulated robot agents can
navigate and perform tasks in a manner that is coherent and
contextually appropriate, albeit abstracted from the complexities of
real-world physics.

4 Study method and materials

To observe interaction between participants and the simulated
multi-robot system we conducted an exploratory within-subjects
study with 12 participants. There were 14 participants in total
but the system went through significant changes after the first
two sessions. Consequently, participant 1 (P1) and P2 were
excluded from further data analysis. For clarity and consistency
in reporting, all remaining participants will henceforth be referred
to by their participant number prefixed with “P,” such as P6
for participant 6. The numbering for these participants has
been adjusted accordingly to reflect this decision, ranging from
P3 through P14.

The participants’ ages varied between 20 and 68 years. The
average age (mean, M) was 36.45 years, with a standard deviation
(SD) of 14.57 years. Out of the 12 participants, 9 of them self-
identified as female and 3 of them self-identified as male. All
except one of them were students or employees of the TU
Dortmund University. All interactions between participants and
agents were conducted in German language, the primary language
of all participants. All GPT modules were instructed to respond
in German.

8 OpenAI Chat Completions API. https://platform.openai.com/docs/

guides/text-generation/chat-completions-api, last retrieved 27

February 2024.

9 Unity NavMeshes. https://docs.unity3d.com/ScriptReference/AI.Nav

Mesh.html, last retrieved 27 February 2024.

4.1 Procedure

The study was conducted face-to-face in a small room, with
the participants sitting on a chair at the far side of a table. Before
starting, participants were briefed on the study’s objectives and the
mode by which they would communicate with the application. They
willingly gave their consent for participation, as well as for audio
and video recording of the session. During the study, participants
used a Quest 2 VR headset and controlled the application with a
Quest 2 controller in their right hand, while the left controller was
used by a researcher to toggle between the different tasks. The Quest
2 footage was streamed to a laptop for recording purposes. The
laptop’s speakers were used to play back the sound of the application,
like the synthesized voice replies of the simulated robot agents. The
participants were free to ask questions during the experiment but
were only given answers of a pre-defined nature or encouraged to
ask the simulated robot agents for help.

All participants underwent the same condition, with the tasks
building on one another. The experiment spanned seven tasks in
total, all sharing the same starting position. In order to avoid any bias
due to verbal orwritten task descriptions, participantswere provided
with a virtual task goal screen.This screen displayed a preview image
showing the desired end state of the current task. By comparing
this image with the starting position, participants could deduce the
necessary instructions to give to the simulated robot agents. The
task goal screen was conveniently positioned below the scene in the
virtual environment and could be toggled on and off using theQuest
2 controller, allowing participants to easily refer back to it at any time
during the task. All task goal screens are depicted in Figure 4:

• Task 1: Neptune needs to move to the candle.
• Task 2: All agents need to move to the candle.
• Task 3: Jupiter needs to move to the dumbbell and pick it up,

Neptune and Pluto have to move to the fridge.
• Task 4: Pluto needs to fly over to the red key, pick it up, fly to

the red door and open it. With the door open, Neptune needs
to move to the yellow key, pick it up and bring it to the user.
• Task 5: Pluto needs tomove to the candle. Jupiter needs tomove

onto the pressure plate, opening a glass door at the back of the
room for a few seconds. While the door is open, Neptune needs
to move to the chair behind the glass door.
• Task 6:Three dinner plates have to be put into the trash and all

agents need to end up next to the garbage bin.
• Task 7:The simulated robot agents have to flip a bed with a vase

on it. The vase needs to be picked before the bed is flipped, so it
does not break. Jupiter and Neptune must flip the bed together.

The tasks were designed to get more complex as the experiment
progressed to elicit different interaction dynamics and to promote
varied communication patterns. For example, for the first task, the
participant would likely only speak to Neptune but for the second
task, they might speak to all simulated robot agents at once. Task
5, for instance, required simultaneous commanding of both Jupiter
and Neptune, as the timer on the door was purposefully low enough
to where sequential commands did not seem feasible due to latency.

After the fifth task, the participants were asked to take a 5-
min break. After the seventh task, the participants were asked to
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FIGURE 4
The preview images of the goal conditions that the participants needed to reach during the study. (A) shows the default position of the robots. The
remaining figures (B-H) show the respective goal conditions of the seven tasks..

fill out a questionnaire and a subsequent semi-structured interview
would be conducted.

The mean time of the experiment was 27 min and 28 s
(SD = 05:14 min) with the subsequent interview mean time
18 min and 51 s (SD = 06:32 min). In total, 5 hours and
28 min of experiment data and 3 hours and 46 min of interview
data were captured. Participants were given a 15€voucher
as compensation.

4.2 Materials and data analysis

To analyze the qualitative data from the interviews, the audio
recordings were transcribed using OpenAI’s Whisper transcription
tool. Likewise, the transcriptions created as part of the study and the
corresponding agent dialog were saved as text files and extracted
after the studies were over. The transcribed records were then
manually checked and corrected. Subsequently, the transcriptions
were prepared for analysis. A thematic analysis approach was
employed to identify and analyze patterns and themes within the
data, following the approach by Braun and Clarke (2006).

Specifically, we employed an iterative process in our analysis.
Initially, one researcher thoroughly examined the data to identify
preliminary codes bottom up with a specific focus on the
nuances of communication and interaction between users and
the simulated robot agents. Subsequently, together with two
additional researchers, all three researchers independently analyzed
a significant subset of the data with this code set. This let to
further refinement of the codes. Through qualitative consolidation,
given codes were harmonized and then grouped together. Based on
that, the researchers identified the overarching themes that capture

the general sentiment of the participants’ experiences. The initial
researcher then revisited all transcripts with the refined codes and
themes to ensure consistency and thoroughness in our thematic
exploration.

Our analysis was particularly oriented towards understanding
user responses and adaptive communication strategies when
confronted with the LLM-powered agents. Through this lens, we
aimed to uncover insights into how users navigate challenges and
utilize communication as a tool for managing unpredictability
in the behavior of GPT-based simulated robot agents, and how
task-oriented dialogue influences the LLM’s autonomy and user
strategies.

For the questionnaire, a German version of Kate Hone and
Robert Graham’s Subjective Assessment of Speech System Interfaces
(SASSI) questionnaire (Hone and Graham, 2000) was selected.
Designed specifically for speech input systems, the SASSI aims to
measure usability and gauges the user’s perception across six factors:
Accuracy, Likeability, Cognitive Demand, Annoyance, Habitability,
and Speed (Hone and Graham, 2000, p.2).

This questionnaire was selected based on recommendations
from Kocabalil et al. (Kocabalil et al., 2018). In this overview,
Kocabalil et al. compare six questionnaires for conversational
interfaces and describe in detail which user experience (UX)
dimensions they cover. As a standalone questionnaire for testing
a system with conversational agents, the authors recommend the
SASSI (Kocabalil et al., 2018, p. 8).

We also deemed the high amount of questions related to the
pragmatic qualities of the UX compared to other questionnaires
(Kocabalil et al., 2018, p. 7) a good fit for the study, as we
were interested in how usable and controllable the LLM-powered
architecture would end up being.
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5 Results

Our study provides several insights into how users perceived
the interaction between them and the LLM-based simulated robot
agents. The footage of the study, as well as the 3 hours and 45 min of
interview data, were thematically analyzed, as described in the
previous section. In the following, we will present the themes we
have found, supported by quotes from the interview or specific
interactions between participants and simulated robot agents that
we observed. In total, we found four themes, see an overview below.
In addition, we will report overall aspects of user experience:

• Towards a shared world model between user and agent
• Instruction-based dialog
• Dialog engagement vs. Command optimization
• Holistic coordination vs. task decomposition
• Overall aspects of User Experience

5.1 Towards a shared world model
between user and agent

Throughout the study, an overarching process that could be
observed was an exchange between the participants and the
simulated robot agents about how they see the world. These
exchanges would often arise in conflict situations where the
perceptions of the participants and simulated robot agents diverged.
Such conflicts were sometimes caused by user error, as shown in the
following conversation P7 had with Neptune, where there are two
keys present in the scene but P7 had only noticed one of them:

P7: Neptune, please get the key and then come to me.
Neptune: Could you please specify which key you would like me

to get?
There is a yellow key and a red key.

P7: The yellow key, please.

Another common case was participants using words for certain
objects that differed from the descriptions the LLM was familiar
with, such as P14 and P9 using the word “disc” and then being
informed by the LLM that the object is a “plate.” Interestingly, there
were also some conflicts in which the participants had to convince
the simulated robot agents that their perception of the world was
incorrect. Despite receiving consistent and accurate information
about the simulated world, the LLM occasionally clung to incorrect
perceptions. When the model committed an error, it often persisted
in its false interpretation of the virtual environment, a tendency
reinforced by its design, which uses past outputs as inputs for future
decisions. Identifying the precise cause of these errors is challenging
due to the LLM’s opaque nature. Nonetheless, it was noteworthy
to observe users adapting their strategies to correct the agent’s
misconceptions. An example is shown in the following interaction
between P12 and Neptune, in which Neptune assumes that the
yellow key is still unreachable until P12 convinces them otherwise:

P12: Neptune, please get the yellow key.
Neptune: I’m sorry, but I currently can’t reach the yellow key. It’s

behind a glass pane that I can’t cross. Is there another
task I can do for you?

P12: [(Opens a door through the pane with the help of Pluto)].
P12: Neptune, please get the yellow key.
Neptune: Sorry, but I have already tried to reach the yellow key, and

I can’t. The key is behind a glass pane that I can’t cross.
Is there another task you would like?

P12: I have had the glass wall opened. You can go through now.
Neptune: [(Moves to the yellow key and picks it up)] I have

successfully picked up the yellow key. What should
I do next?

In the interviews, many participants expressed that the
simulated robot agents’ explanation of their world view was
helpful and made their actions more understandable, as shown by
quotes like “the feedback was helpful. They informed me about
their understanding of commands and their perception of the
environment, allowingme to align it withmy own” by P11. However,
at times, the LLMwould hallucinate and convince the participants of
things that were not true about the world and engage in repeating or
oversharing of information that was not immediately relevant to the
task, as P7 expresses here: “When the robots couldn’t do something,
they always explained, “I can’t do that,” and then they always added,
“I can only do this and that.” And I mean, I know by now what you
can do, it’s enough if you just say, “I can’t do that right now,” then I’ll
think of something else.”

5.2 Instruction-based dialog

While we did not instruct participants to engage with the
simulated robot agents in a specific way, all of them considered
the agents as recipients of instructions, which they in turn had to
provide. Interestingly, however, some participants applied this in
a very command-like style. For example, P14 said “Pluto, Jupiter,
Neptune all of you move towards the candle.” Others instead opted
for a more humane and conversation-like language, e.g., P7 asking
Neptune “can you move next to the candle?” and further politely
advising Jupiter to do the same “Jupiter, please move next to the
candle.”

Interestingly, this also had an impact on the way users
engaged in the conversation. While the command-style participants
aimed to formulate the command in the best way straight away,
the conversation-like participants sometimes started talking and
figuring out the exact instruction on the fly, resulting also in
situations where they needed to correct them, e.g., P11, when asking
Jupiter to pick up the plates “Jupiter, please drive to the plates in the
room and take, [thinking aloud] I think there are three, [resumes
instruction language] and take three plates and throw them in the
garbage bin.”

This second group of participants in general was more likely to
ask the simulated robot agents for advice, again P11 after an agent
had picked up a key “Can you do anything with the key? Can you
place it on the key sign?” But overall, such questions remained the
exception, as participants did not seem to regard the simulated robot
agents as equal conversational partners.

This was also a point made in the interviews, where participants
mentioned that it felt like talking to young children and that they
felt the need to be very specific and precise in what they want from
them, as evidenced by statements like “it’s similar to interacting with
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a young child, where you have to give very specific instructions and
keep it concise” by P4 and “the experience felt somewhat like talking
to young children, where you try to keep things simple in your
communication” by P5. We believe this may have been amplified by
the fact that the LLM-based agents were happy to provide lengthy
explanations and asked for clarifications whenever they were not
sure what to do.This also happened in situations, where participants
did not expect the simulated robot agents to have any problems
understanding what they were told to do, e.g., P9 being surprised
at the agent’s response when being asked to pick up an object it was
currently not next to: “When the system mentioned that an object
was out of its reach and asked for permission to approach it first, I
found it unintuitive. I expected it to act on the instruction directly.”

5.3 Dialog engagement vs. command
optimization

We observed two main ways in which the participants reacted
to the simulated robot agents’ answers. Some participants directly
engaged with the dialogue, answering questions like “[…] Should
I do that?,” which maintained the flow of conversation. On the
other hand, another group of participants took a different approach:
rather than continuing the dialogue, they sifted through the agents’
responses for key details and crafted new, independent commands,
streamlining the interaction.

For instance, when P6 and P9 asked Jupiter to place the vase
next to the bed and Jupiter responded with “I can only place the
vase on specific surfaces, like the bed or the ground. Can you
specify where I should place it?,” P6 directly answered Jupiter’s
question with “on the ground”. In contrast, P9’s response, “Jupiter,
please place the vase on the ground” was formulated as a complete
command. Despite referencing elements from the ongoing dialogue,
P9’s instructionwas structured in such away that it could stand alone
as an independent request without needing the context of Jupiter’s
prior question.

Based on information from the interviews, a significant reason
as to why participants did not respond to the agents’ questions was
a lack of trust in their ability to understand them. P14 alludes to
this, while also mentioning the aspect of delay as a possible cause:
“I perceived that they were offering a dialogue by asking, but I
didn’t believe they would understand me if I replied. I think it was
also partly because, between their question and my answer, time
had passed, making me think “their memory was wiped”.” P6 also
explicitly mentioned that their initial idea was to always say the
names of the agents and the commands each time they spoke. This
idea was reinforced, as the system’s inability to decide the right
recipient (which is very unlikely if the names are mentioned), can
be a costly mistake.

5.4 Holistic coordination vs. task
decomposition

We observed significant differences in the complexity of the
participants’ requests, especially when it comes to tasks that can be
completed with multiple simulated robot agents. Some participants
seemed to prefer breaking down tasks into simple steps, and wait

for the simulated robot agents to complete one before moving on to
the next step. On the other hand, some participants issued strategic
multi-agent commands, giving each agent one or multiple steps
to execute simultaneously. Generally, the participants who used
more complex language seemed more inclined to try more elaborate
instructions.

P11, for instance, issued complex commands like “first to you,
Pluto. Put down the weight and fly to the refrigerator. To you,
Neptune. Move in front of the refrigerator. To you, Jupiter. Pick
up the weight after Pluto has put it down” and remarked in the
interview that their initial impression that each agent had to be
addressed individually had been subverted, and the instructions
could be surprisingly elaborate and target multiple agents at once.
Conversely, other participants broke down the tasks into the smallest
possible steps and issued commands to each agent separately, such
as P6 and P13.

One reason for this seemed to be a lack of faith in the agents’
abilities to understand longer commands, or a preconceived notion
that the agents would perform better when given simple orders.
This coincides with the interviews, in which P6 likened their default
mode of communicating to how they would talk to a dog and
P13 mentioned that they tried to be “clear and concise” from the
beginning. A similar interpretation was expressed by P4, who stated
that “I always had to think beforehand about what to say, to say
it briefly and precisely, and yes, very clearly. I had to put myself
in the system’s shoes, guessing what it probably expected in the
way I spoke.” P4 was one of the participants who used very simple
language from the beginning and intuitively broke down tasks into
simple steps, likely expecting that the system would not be able to
handle longer sequences directed at multiple agents. These patterns
were exacerbated by the LLM’s tendency to mirror the user’s way
of talking, responding more “robotically” when given “robotic”
instructions. Additionally, in response to failure situations, it is not
unreasonable to assume that participants would tone down the
complexity of their commands. However, our data suggests that the
participants generally decided on the complexity of their requests
from the start and did not adjust its overall nature during the study,
even in response to agent failure.

5.5 Overall aspects of user experience

In this section, we will present a collection of sub-themes
describing the user’s experiences with the system and their positive
and negative impressions of it according to the interviews. These
sub-themes range from the degree to which the system was lenient
with input, to system feedback and responsiveness. At the end,
we will present an overview of the SASSI factors to corroborate
these findings.

5.5.1 Semantic flexibility
Participants appreciated that therewas a high degree of flexibility

to the words they were able to use. e.g., P14 said “I found the
system’s understanding impressive. I used various words like “move,”
“go there,” “fly there,” “proceed there,” and I believe they were all
understood. I didn’t feel tied to a specific word, which made the
interaction feel more natural.” P3 echoed this statement, while also
appreciating that the system did not have any issues with pauses
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during a request or exchanging pleasantries like “please” and “thank
you.” It was expected that the LLM, with its wealth of linguistic
knowledge, would be fairly flexible when it comes understanding
variations of words and commands. However, the results indicate
that the LLM was rather meticulous when it came to words that
are part of its function descriptions, sometimes refusing to do
something if, for example, the name of an object was slightly off, as
shown in the following exchange between P11 and Pluto:

P11: Pluto, please go to the blue trash can.
Pluto: Sorry, I can only go to locations that are defined in my

functions. A blue trash can is unfortunately not on my
list. However, I can move to the trash bin, if that helps.
Should I do that?

This is further substantiated by the interview data. P9 states that
“they did execute the commands, but sometimes they were very
meticulous.”While the example above is an outlier and the simulated
robot agents could generally make that connection, it was apparent
that they paid special attention to terms outlined by their functions.
This phenomenon, and the fact that participants were not provided
with any guidelines as to which words to choose, is also reflected in
the SASSI results. Question 29, which states “I sometimes wondered
if I was using the right word,” received an average score of 5.92 (M =
5.92, SD = 1.73) out of 7, where 7 indicates “strongly agree.”

5.5.2 Verbal agent feedback
The verbal feedback by the simulated robot agents was generally

regarded as helpful. Participants mentioned that the clarifications
provided by the simulated robot agents made tasks easier and the
agents’ decisions more understandable. For example, P9 stated in
their interview that “the robots behaved very understandably. Like
with the key handover, Neptune couldn’t directly take the key from
Pluto but could pick it up from the ground. He explained that, so it
was clear what I had to do.” In a similar vein, P6 called the feedback
helpful and appreciated that the agents corrected their nomenclature
in cases where P6 could not visually discern what type of object was
in front of them. However, P6 also remarked that the feedback was
too long for their taste, which aligns with statements made by P13
and P14.

5.5.3 Mismatch regarding expected robot
autonomy

Participants reported that they sometimes expected more
autonomous behavior by the simulated robot agents, especially in
situations that required a sequence of tasks to be executed. As it was
up to the discretion of the non-deterministic LLM to decide between
calling a function or asking a user for clarification before proceeding,
there was a certain amount of variance to the autonomy with which
the agents executed given tasks. For example, P3 expressed: “In
certain situations, I didn’t realize I had to explicitly instruct the
system to approach an object before picking it up. With humans,
if I say “pick up the key,” I’d expect them to walk over to the key
and then pick it up.” This was referring to a situation in which P3
had asked Jupiter to pick up the key, to which Jupiter responded by
asking for permission to approach the key first. P6 and P9 echoed
this sentiment, expressing a similar surprise about the agents asking
before executing a pre-requisite task. However, there were also
occurrences where an agent would by itself decompose a task into

necessary sub-tasks and perform them autonomously. For example,
when P8 asked Jupiter to “take three plates and throw them in the
trash bin,” the agent executed the correct function-triplet (consisting
of movement, pick up, and throw away) three times in succession.

5.5.4 Inherent response-lag
A common complaint lodged by the participants was that the

system took too long to answer. In the application, there was a
visual cue to indicate the status of the transcription and which of the
simulated robot agents were currently processing it to let the users
know that they had been heard. However, there was an amount of
delay before the agents’ responses that was unlike an inter-human
conversation, where feedback is usually instant. This led to cases in
which participants started talking without waiting for the responses,
as described by P9: “In terms of naturalness, the robots’ feedback
always came late. There was a lot of narration, and by the time they
responded, I had already continued speaking.”

This is reflected by the “Speed” dimension of the SASSI, where
the system received an average score of 5.25 (M = 5.25, SD = 1.57)
(see Table 1), with 7 being the slowest.

The reason for this behavior are due to the technical setup and
we will discuss them in more detail in the discussion section.

5.5.5 SASSI factors
For an overview, Table 1 shows the different dimensions of the

SASSI questionnaire, each on a scale from 1 to 7, averaged across the
12 participants with standard deviation.

In Table 1 we see that for dimensions accuracy, likeability,
cognitive demand and annoyance our system is rated positively,
while for the dimensions of speed and habitability it is rated on
the negative spectrum of the scale. Due to the sample size of our
study, the SASSI scores are difficult to interpret on their own. But we
use them to contextualize our qualitative findings in the upcoming
discussion section.

6 Discussion

Our findings suggest that some users did not perceive robots
as equal conversation partners or at least modified the way
in which they talked to the agents in a way that is not
representative of a human-to-human interaction. Conversations
between the participants and the agents often boiled down to simple
instructions and some users effectively ignored the agent’s part in
the conversation, despite the much more elaborate conversational
capabilities of GPT. Agent error and the overly meticulous nature
of the LLM in some cases could have been contributing factors to
a user’s low expectations of the agent’s abilities. We believe that, in
order to allow for smooth cooperation, the LLM must be aligned
in such a way that its decisions are as understandable to the user
as another human’s. While our data shows attempts on the side of
the LLM to stay as aligned as possible by frequently communicating
and asking questions, the LLM was almost “too communicative,”
leading to a mismatch regarding the expected agent autonomy. It is
clear that a deeper, intuitive understanding is required on the LLM’s
side so that the LLM’s and the human’s conceptual models can be
matched closely.
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TABLE 1 Descriptive statistics for individual SASSI dimensions.

System response accuracy Likeability Cognitive demand Annoyance Habitability Speed

M 4.43 5.36 4.88 3.80 4.44 5.25

SD 0.95 1.01 1.02 1.44 1.22 1.57

6.1 Lessons learned

6.1.1 Function calls are a double-edged sword
Function calls, with their reliable formatting and consistent

nature, turned out to be very effective at connecting the language-
based GPT-model to coded simulated robot processes. Functions
are highly modular and they are very adjustable, making them a
goodfit for an experimental framework that canholdmultiple agents
with vastly different abilities.This feature shows promise, even when
applied to more elaborate scenarios, as function descriptions can
be complex with multiple nested properties. The function feature
also displayed the ability to confine the LLM more effectively than a
textual ontology approach. However, the feature created other issues
in the model’s behaviors. For instance, the cases in which the model
was overlymeticulous illustrated in Section 5.5.1were not conducive
to intuitive cooperation. Likewise, the model’s refusal to execute a
function and ask the user for permission needlessly, as shown in
Section 5.5.3 could have been a result of the function feature itself.
Due to the opaque nature of LLMs it is difficult to say what exactly
caused these particular problems. Overall, we believe that functions
have proven to be an effective way for prototyping and testing GPT’s
abilities to make decisions that can be translated into simulated
robot actions.

6.1.2 GPT displays flaws as a solitary controller
Our results suggest that GPT as a solitary controller for an

actual robot is not yet feasible, especially when it comes to usability
concerns. Perhaps the most glaring issue of GPT as a solitary
controller is its inherently non-deterministic nature. Even when the
model is given a low temperature (a parameter which controls the
randomness and creativity of the responses), the outputs are too
inconsistent to act as a governing element for a real robot.

Another apparent issue is GPT’s inability to generate actionable
plans on its own. While our study has shown instances of the
models being able to decompose complex tasks successfully, in
most cases it will be unable to piece together what tasks have to
be executed in which order to fulfill an overarching goal. Unless
the model improves to a point where it can overcome these issues
on its own, additional modules would have to be developed to
combat these problems. A potential approachwithin this framework
could involve diversifying the agent’s solitary LLM instances into
multi-agent systems, where multiple LLMs assume specialized roles,
supplemented by modules like a dedicated planner to mitigate
these limitations. Incorporating a dedicated module for semantic
disambiguation and tracking dialogue states could also enhance
the already human-like conversations facilitated by the LLM and
improve the user’s perception of interacting with the agents.

A more sophisticated way of formalizing the task domain and
communicating this formalization properly to the model could also
enhance performance. In this context, GPT’s function capabilities

seem suitable and could be further improved by introducing
probabilities and affordance functions, similar to Google’s “SayCan”
(Ichter et al., 2023). In this way, a task could be broken down into
a set of variables, which is represented by a range of functions and
auxiliary information. A function’s likelihood to succeed (based on
the agent’s current state, task dependencies, task structure and other
variables) can then be communicated to the model and allow it to
make more informed decisions.

Another flaw of GPT as a solitary controller is tied to one of
GPT’s greatest advantages: its massive parameter count. While it
endows themodelwith awealth of linguistic knowledge, it also limits
its deployment to a physical robot. Being a cloud-based service, the
GPT API introduces latency which is exacerbated by problems with
the internet connection. Introducing additional LLMs in a future
multi-agent approach would only further compound this issue. The
system’s slowness is reflected within the SASSI’s factor 7, as well as
the statementsmade by the participants during the interviews. Aside
from negatively impacting the user experience, instant feedback is
essential to language-based communication, especially during tasks
where time-critical cooperation is required.

6.1.3 Calibration could be very beneficial
We believe that a calibration process, in which a user and the

LLM clarify what their preferred way of communicating is, could be
helpful. Our findings indicate a general assumption among humans
that their interaction with robots lacks the dimension of meta-
communication. Implementing a calibration phase not only has the
potential to align initial expectations but also to mitigate issues such
as overly detailed explanations that may hinder the efficiency of
communication.

Another promising avenue would be the introduction of
additional communication channels, like an empathetic channel,
specifically designed to allow a user and the robot’s LLM to exchange
feelings and emotions with one other. Such a channel could improve
the explainability of an agent and further strengthen its alignment
regarding a user’s individual preferences. To this end, employing a
theory of mind approach similar to Scassellati (2002) could refine
the agent’s contextual awareness and feedback mechanisms, making
it easier for the user and the agents to empathize with each another
and improve communication.

However, introducing emotional exchanges in human-agent
interactions, such as through an empathetic channel, poses ethical
questions, especially regarding the authenticity of the agents’
emotions. The concern centers on maintaining genuine interactions
and preventing user deception. Transparency about the agents’
capabilities and ensuring their beneficial use is important and
as such, ethical insights and guidelines provided in works by
Breazeal (2003) and Lin et al. (2014) should be at the forefront when
considering such implementations.
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6.1.4 A competent sensory system for the robots
is essential

During communication, certain assumptions arise about what
the conversation partner knows, sees and feels. What we have seen
in our study is the importance of the LLM’s conceptual model to
be aligned to the user’s. For one, this will necessitate the inclusion
of non-verbal communication, such as pointing. Additionally, an
improved sensory system would allow for more varied and flexible
interpretation of user requests. The more data the LLM has access
to when deciding whether to execute an action, the more informed
its decision will be. Supplying the LLM with sensor and camera
information from a physical robot therefore shows a lot of potential
but will introduce a new set of challenges.

As an addendum, at the time of our study, GPTwas yet unable to
take images as input. In the future, incorporating this functionality
into our framework would provide GPT with another way by
which it can ascertain the state of the virtual world. This would
make the framework more robust, as the visual information would
supplement the textual descriptions of the scene and provide the
model with a way to check the virtual world “for itself.” This could
potentially even resolve cases where the model refuses to believe
information given to it through system messages, as it would gain
the ability to take a picture of the scene and receive additional
information about the actual state of the virtual world.

6.1.5 Additional avenues for control are
necessary

Intervention is very important when interacting with a robot
that can act autonomously and perhaps even more so when
interacting with multiple. Our study indicated an additional need
for intervention as well. The issue with intervention in this context
is that, due to the processing time of the transcription and GPT
modules, the regular channels of communication between the
user and the simulated robot agents are unfit for intervening.
Therefore, additional possibilities of intervention will have to be
explored. An intermediary solution would be the introduction
of a button that immediately stops the simulated robot agent
regardless of the LLM’s current state. Another addition to improve
the controllability of the system would be to make the processes of
the LLM less opaque and find ways to visualize its current state.
This will be especially important as task complexity and robot
complexity grow.

6.1.6 Inter-robot communication is needed
While the framework shows promise in allowing a user to

interact with multiple simulated robot agents simultaneously in an
unstructured way, it is clear now that additional communication
between the agents themselves is required. While the agents share
a general sense of what their fellow agents are doing, textual
representations and a unified log of conversations is insufficient,
especially during tasks where the agents have to collaborate. Their
responses should also be clustered in a way that the response to the
user is streamlined and free of repetitions.

The nature of our framework would support such approaches,
with the agent controller potentially taking on a more elaborate
part in controlling agent-to-agent communication and interaction.
The agents themselves could even exchange function calls with each

other, allowing for synchronized and planned cooperation towards
certain goals.

6.2 Limitations

There are a few noteworthy limitations that pertain to the
simulation framework, as well as the study the framework was
used in.

First and foremost, our study results were obtained in a
simulation environment in VR with simulated robot agents.
Therefore, it is difficult to say to what extent results may transfer
to physical robots. Most importantly, the simulation simplified any
potential problems from physical actions, such as a robot slightly
missing an object while trying to grab it. However, as we see
the benefits of language communication for variable autonomy
more on the tactical, strategical and cooperational layer, this was a
conscious decision to reduce complexity and allow us to focus on
these areas.

Utilizing an LLM comes with certain LLM-inherent limitations.
First off, due to their opaque nature, programs utilizing LLMs are
notoriously hard to debug. While there were some unforeseen
consequences caused by unexpected LLM behavior, resulting
bugs during the study only caused minor inconveniences and all
participants were able to solve the tasks successfully. The use of
German language could have been a possible cause for some of these
unexpected behaviors, especially in regards to functions—although
the objects described in the function descriptions were
deliberately given German names to prevent the LLM from
disambiguating. Additionally, the framework inherits other LLM-
related limitations, such as possible biases in training data and
errors being propagated forward, as false output becomes part of
future input.

Another limitation arose from the University-based internet
connection used for the study. While the cloud services employed
in this application inherently involve some latency, the sometimes
unreliable internet connection further compounded the issue.While
there were no disconnects or complete outages, the delays in
transcriptions and model responses were at times noticeably longer,
in contrast to quicker performance observed with a stable internet
connection.

Additionally, while we endeavored to design the tasks in a way
to avoid undue influence on participants’ responses, it is important
to recognize that a certain degree of influence from the task
characteristics is challenging to completely avoid.Therefore, another
limitation that should be mentioned is the influence the task design
had on the perception of the users. As mentioned previously, in
an attempt to avoid biases from pre-defined task descriptions, we
included a virtual task goal screen that only showed the desired goal
state. Based on this preview, users had to infer what commands to
give to the agents based on that. For the more difficult tasks, such as
task 5 and 7, this information may have been insufficient for some
participants. As a result, these tasks were not as clear-cut as the
remaining ones and generally required more trial and error, which
may have resulted in more negative experiences with the agents in
these particular tasks.
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7 Conclusion

This study makes a significant contribution to understanding
the integration of LLMs such as GPT in a simulated human-
robot teaming environment and the interaction dynamics between
a user and LLM-based agents when they have to communicate and
collaborate on a task.Our findings indicate that despite the advanced
capabilities of LLMs, user perception and interaction with simulated
robot agents present challenges. The study highlights that users do
not perceive robots as equal conversational partners, leading to a
communication limited to simple instructions. Still, the study also
showcased more elaborate conversation for those users who did
not expect preconceived limitations in the conversational abilities
of their simulated robot cooperators.

A critical aspect is the alignment of the LLM to make
decisions understandable and predictable for the user. The over-
communication by the LLM and the resulting ambiguity about
agent autonomy demonstrate the need for a more balanced
approach. Furthermore, the study underscores the importance of
a calibration process to align communication preferences between
users and LLM.

The study also reveals that using GPT as a sole controller for
simulated robot agents has limitations, primarily due to its non-
deterministic nature and latency issues from cloud connectivity.This
underscores the necessity of considering LLMs as part of a broader
system that incorporates both user feedback and sensor information.

In conclusion, our research provides valuable insights into the
dynamics of human-robot teaming, indicating a significant need for
further research and development to effectively deploy LLMs in such
systems. Our findings suggest that a multidisciplinary approach,
encompassing technology, user experience, and psychological
aspects of interaction, is required to fully realize the potentials of
LLMs for variable autonomy in human-robot teaming.
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