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(a) Slashing blocks. (b) Sidestepping cuboids. (c) Ducking from cuboids. (d) Elicited spatiotemporal data.

Figure 1: We conduct a field study on behavioral biometrics in VR. Participants played Beat Saber where they sliced colored
blocks with light sabers attached to their controllers (a), had to side-step cuboids (b), and were required to duck during the game
(c). We elicit their spatiotemporal motion data and explore continuous user identification over a time span of eight weeks (d).

ABSTRACT
Behavioral biometrics has recently become a viable alternative
method for user identification in Virtual Reality (VR). Its ability
to identify users based solely on their implicit interaction allows
for high usability and removes the burden commonly associated
with security mechanisms. However, little is known about the tem-
poral stability of behavior (i.e., how behavior changes over time),
as most previous works were evaluated in highly controlled lab
environments over short periods. In this work, we present findings
obtained from a remote field study (N = 15) that elicited data over a
period of eight weeks from a popular VR game. We found that there
are changes in people’s behavior over time, but that two-session
identification still is possible with a mean F1-score of up to 71%,
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while an initial training yields 86%. However, we also see that per-
formance can drop by up to over 50 percentage points when testing
with later sessions, compared to the first session, particularly for
smaller groups. Thus, our findings indicate that the use of behav-
ioral biometrics in VR is convenient for the user and practical with
regard to changing behavior and also reliable regarding behavioral
variation.
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1 INTRODUCTION
In recent years, the number of Virtual Reality (VR) users has been
rising continuously. Today, VR empowers users to experience a
variety of applications, ranging from productive use cases (e.g.,
meeting coworkers in a virtual space [9]) to entertaining ones (e.g.,
playing immersive games [8]). In many applications, identifying the
user can be beneficial since it enables personalized experiences and
assures the protection of personal user data. Today’s user identifica-
tion is mostly explicitly designed, which means that one’s primary
action (e.g., playing a game) is interrupted to allow identity veri-
fication by, say, interacting with a password window. Behavioral
biometrics is a promising approach that tackles this problem. It
utilizes distinct patterns in human behavior to identify users and
distinguish between them, potentially enabling implicit and contin-
uous user identification [2, 51].

Researchers have proposed various means for behavioral biomet-
rics in VR [21, 28, 37, 42, 50]. In most cases, researchers conduct user
studies in their labs to explore behavioral biometrics, which are of-
ten conducted only within a single session (i.e., a single day of each
participant participating in the study) [29, 49] or, at maximum, tak-
ing place across two sessions [27, 36, 42]. However, human behavior
tends to change over time. For example, gait can be impacted by
long-term time effects, such as aging [11], short and medium-term
time effects, such as shifts in mood [7] or context [14]. Thus, the
extent to which this change impacts identification systems remains
unclear. The change in behavior over time is specific to behavioral
biometrics and is called “stability” or “permanence” [13]. While
such changes are present in physiological biometrics, too (e.g., the
changes of a face due to aging), it is yet not clearly understood how
this affects human behavior (e.g., during VR activities).

Therefore, this work investigates the mid-term stability of be-
havioral biometrics for user identification in VR. We study user
behavior over eight weeks in a field experiment, where we dis-
tributed Meta Quest 2 headsets to 16 participants. We asked them
to play Beat Saber1, a popular VR game, at least twice a week. In
Beat Saber , users must slice floating cubes to the rhythm of a song.
We elicited the users’ spatiotemporal motion data and used it for
implicit identification and to study how time affects the identifica-
tion rates. We selected this game because it elicits various (upper)
body movements similar to those previously studied in other VR
games [23, 27].

The findings of this work help in creating systems that identify
users by their actions in Beat Saber . Thereby, overarching systems
can establish trust in a user’s identity after they played the game;
thus, the need for re-identification at a later point might vanish.

Contribution Statement. The contribution of our work is three-
fold. First, we introduce a method of conducting remote field studies
in VR, enabling researchers to collect data outside controlled lab-
oratory settings. Second, we report insights into the stability of
behavior from a remote field study that lasted over eight weeks
and analyze its effects on user identification. At last, we publish
our dataset to enable replicability in addition to the source code of
our background application.

2 RELATEDWORK
Our work takes place at the crossroads of implicit identification and
behavioral biometrics in VR. Combining both allows for seamless
user identification, where users are relieved of having to remember
dozens of complex passwords [2]. In addition, they also save con-
siderable time by not having to explicitly enter them anymore [2].
Passwords, the current most prevalent form of determining the
identity of a user through a knowledge-based component, are asso-
ciated with a number of problems. First, with the increasing number
of passwords [24], users are increasingly overwhelmed. This leads
to passwords being frequently reused [45], being guessable [15]
and predictable [38]. Furthermore, the failure rate of entering pass-
words is associated with approximately 10% [5, 47], hence they are
considered to be imperfect [4]. At last, the requirement of users
having to memorize passwords leads to a phenomenon known as
“the great authentication fatigue” [2, 47].

However, alternatives to passwords do exist. One is the em-
ployment of security tokens that users need to carry with them
and which can be lost [39], which are again subject to usability
issues [22]. The other is the employment of biometrics which are, in
comparison to tokens, always with the user and which, in compari-
son to passwords, cannot be forgotten [19]. Biometrics are often
distinguished into physiological biometrics, using primarily phys-
iological attributes such as finger prints [16] or finger veins [10]
recognition and behavioral biometrics, using behavioral features
such as gait, eye gaze [12, 21, 29] or full body movement [40, 42].
However, physiological biometrics in many cases need to be pro-
vided explicitly to the device’s sensor (e.g., the index finger needs
to be actively moved to the sensor), hence they still interrupt users
in many cases.

2.1 Implicit Identification
Implicit identification is a term that is composed of two combined
key concepts. The first key concept is identification, a mechanism
related to user authentication. User authentication means that a
computing system establishes trust in a user’s identity through
either verification or identification [18]. The second key concept
of identification is its associated implicitness which is related to
the interaction itself. Identification in the context of biometrics
denotes the ability of a system to identify the user solely based on
an obtained biometric sample [17]. It is, therefore, similar in concept
to verification, which besides the sensor sample, also requires a
claim of identity from the user (e.g., a provided user name) [17].
Identification is beneficial as it only requires the sensor sample and
no other information from the user.

Hence, implicit identification is defined as the ability of a de-
vice to identify its users through “actions they would carry out
anyway” [20]. Thereby, implicit identification is based on implicit
interactions by the user [48]. As a consequence, the identification
process does not demand time from the user, thus being transparent.

An implicit identification scheme thereby allows for the creation
of a continuous identification system. Continuous identification
denotes the ability of a system to continuously determine the user’s

1VR Game: Beat Saber. https://beatsaber.com, last retrieved August 29, 2023.
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Figure 2: Overview of the days each participant contributed to the data set. Participants are color-coded. The number in every
circle equals the number of recordings per day, which is also reflected in each circle’s size.

identity, which stands in contrast to most other systems that deter-
mine the user’s identity only once (e.g., at the beginning of a usage
session.) [51, 52].

2.2 Behavioral Biometrics in VR
Behavioral biometrics and VR are a particularly good fit, as the rich
interactivity of VR allows the implicit sampling of data elicited by
the headset anyway. Additionally, traditional verification mecha-
nisms such as pattern locks were shown to be insecure in VR [6, 53].

One such behavior is head movement. The movements associ-
ated with the head are a very distinct trait, as they combine head
movement patterns with body height, where especially the latter
is also a strong biometric indicator. M. R. Miller et al. for example
showed an identification rate of over 90% in a user study with 511
participants, based on the head movements during the observation
of a 360-degree VR video [33]. Prior to their work, Mustafa et al. and
Sivasamy et al. conducted two works respectively, where Mustafa
et al. found mean equal error rates of 7% when authenticating users
based on their head and movement body patterns, and Sivasamy et
al. found an accuracy of 99% for continuous authentication [30, 37].

Besides the movement of the head, a number of works have been
published that use full body motions in VR for user identification
and many works utilize controllers for this reason. For example,
Kupin et al. have shown that throwing a ball in VR results in distinct
movement patterns using the features of the right controller, coining
the term “task-driven biometrics” [23]. Miller et al. and Ajit et al.
later also conducted works on the ball-throwing activity, using
more features and deep learning, crossing the boundaries of VR
systems and also including real-world constraints [1, 34, 35, 43].
Other examples of activities used for user identification in VR are
full body kinesiological movements [40], games such as archery or
bowling [27], pointing, grabbing, walking and typing [42], and the
movements associated with the interaction with a Rubik’s cube [32].
In contrast to Head-Mounted Displays (HMDs) that have controller

tracking, research also showed that behavioral biometric modalities,
such as head movement, finger-tracking, or eye-tracking can be
a good fit if controllers are unavailable, such as on devices like
Microsoft’s Hololens 2 or Apple’s Vision Pro [28, 29, 37].

However, little is known so far about the stability of behavioral
biometrics and how it impacts identification systems. Although
there have been carried out some works for other behavioral bio-
metrics traits such as gait, it remains largely unclear how the change
of behavior over time impacts identification systems, particularly
for VR [7, 11, 14, 46]. An exception here is a work by Miller et al.
who fused data sets to determine effects in motion behavior over a
period of 7 to 18 months, finding differences in consistency of the
movement, suggesting that short and medium timescales have an
impact in altering VR behavior [36].

To the best of our knowledge, there is no other work besides the
previous work of Miller et al. that explores full-body behavioral
biometrics in VR over medium timescales [36]. Additionally, our
work utilizes a field study under realistic conditions, whereas other
works were primarily lab-based, and we provide a dense sample of
recorded activities in VR (cf., Figure 2).

3 REMOTE FIELD STUDY
In previous work, researchers mostly used highly controlled lab
environments to explore user identification systems. Moreover,
they have been tested only for short periods of time, often within
one session [29] or across two sessions at maximum [28, 36, 42].
Hence, the temporal stability of behavioral biometrics and its impact
on identification performance remains mostly unaddressed. In this
paper, we investigate the temporal stability of behavioral biometrics
over a longer time (eight weeks). To do so, we conducted a remote
field study for which we handed out Meta Quest 2 headsets to
participants and asked them to play the VR game Beat Saber at
least twice a week to elicit spatiotemporal user data. Using live
monitoring, we were able to follow the remote study and send out
reminders when needed.
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Figure 3: (a) Overview of the days (“sessions”) each partici-
pant contributed to the data set. Note that participants con-
tributed multiple songs per session. (b) Histogram of the
length of each sample in the database, measured in frames.
The red line marks the end of the song after 2:21 minutes.
Samples that ended much earlier were unsuccessful or can-
celed attempts by the players, and samples that end a little
earlier were subject to unplanned frame drops by the Meta
Quest 2 device. Longer samples can occur due to device lag.

3.1 Research Questions
Since related work mainly focuses on the feasibility of behavioral
biometrics in virtual reality or on session independence by using
two dedicated sessions, it remains an open research question how
such biometrics behave over more sessions and a longer period of
time. Thus, the overarching research question of this work is:
(RQ) How stable are behavioral biometrics in VR over time?

3.2 Apparatus
The apparatus consists of an Meta Quest 2, the game Beat Saber
and its modification, as well as a study dashboard to monitor the
progress of the study.

Virtual Reality Headset. To achieve comparable results, we opted
for using the same VR headset (i.e., a Meta Quest 2) for all par-
ticipants. The Meta Quest 2 consists of the head-mounted display
and two hand-held controllers that use a six-degrees-of-freedom
inside-out tracking system supporting positional and rotational

tracking. The display runs at a variable refresh rate of 60 to 120
Hz and offers a field of view of 97◦. It can operate without being
connected to a computer, thus, being a wireless, consumer-grade
device using wifi for its connection to the internet.

Beat Saber. For the VR game, we selected Beat Saber , a game in
which users must slice floating cubes to the rhythm of a song (cf.,
Figure 1). We selected this virtual reality game for three main rea-
sons: 1) games are the most popular application category and Beat
Saber is currently the most popular VR application, 2) it requires
continuous interaction as the distance between cubes that require
slicing is short, and 3) it requires body movement over a larger
space (boxes spawn in a different direction: up/down, left/right).
The game is mostly stationary, i.e., players do not need to walk
in the game but may have to turn themselves (depending on the
game mode) or duck or sidestep when obstacles appear. The slicing
of the blocks happens through light sabers that are attached to
the player’s controllers at a forward angle, and slicing the block
in the rhythm of the game and in an optimal angle leads to an
increase in player score. The player’s score can further be increased
by not making any mistakes for a sequence of blocks, and on the
contrary, when one fails to slice the blocks correctly, it might lead
to failing the song. Beat Saber offers multiple different songs that
all have specific boxes appearing at pre-defined locations and with
pre-defined rhythms. We selected the song Commercial Pumping
since it contains a wide variety of different patterns and movements.
The difficulty level influences the speed at which boxes appear. We
opted for Standard & Normal settings since it would be feasible
across participants. For comparability, all participants were asked
to play the same song at the same difficulty level.

Beat SaberModification. To elicit the participants’ spatiotemporal
motion data from Beat Saber , we create a background application2
for theMeta Quest 2, which is our target VR device. Our application
consists solely of a logger that elicits the user’s coordinates for ro-
tation and position of their head-mounted display and the left and
right controller in Euler and Quaternion angles. It detects when the
user launches a song in Beat Saber and terminates upon successful
completion or fail and tracks their movement. Per each rendered
frame of the game, our application fills a buffer and transmits this
buffer to our server over an encrypted connection every two sec-
onds through an HTTP POST request. Additionally, it transmits the
name of the played song, its difficulty and modifier, the acquired
user’s score per frame, and a timestamp, as well as a user-specific
ID token. We store this pseudonymized data in a relational database
on our server (MariaDB 10.3 on Ubuntu 20.04).

Study Dashboard. To monitor participants and make sure that
the data is properly sent to our server, we developed a web-based
dashboard. The dashboard shows how often a specific player played
the game and provided data to us (e.g., the number of songs played
in the last two and seven days and the most played song) and it
additionally provides descriptive statistics of the collected data set
(e.g., recorded number of frames or songs). We used the data elicited
from the dashboard in combination with a number of SQL-based

2BSMG Wiki. Making Mods. https://bsmg.wiki/modding, last retrieved on August 29,
2023.

https://bsmg.wiki/modding
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Figure 4: Movement data of participant P12 with 3 songs sampled at the beginning, mid, and end of the study. The expressiveness
of the movement – particularly the head front-to-back movements on the z-axis – is reduced by time.

views to inform participants via e-mail of their progress and to
remind them of their study participation.

3.3 Participants
We recruited 16 participants (8 female, 8 male) through University
mailing lists aged between 25 and 33 years (𝑀 = 27.77, 𝑆𝐷 = 2.78).
Unfortunately, one female participant broke her hand during a
sports activity unrelated to our study. Hence, we excluded her data
and conducted further analysis on the remaining data (𝑁 = 15).

3.4 Procedure
At the beginning of the study, we explained the procedure to each
participant and asked each for their written and informed consent.
We then fully answered any questions from the participants and
pointed out that it is possible to cancel their participation in the
study at any time without any detriments.

Next, we asked the participants to fill in a brief demographic
questionnaire. We recorded two five-point Likert items at the be-
ginning of the study. The first item asks participants to rate the
statement “prior to participating in this study, I used VR regularly”
on a scale from 1 (completely disagree) to 5 (completely agree). Par-
ticipants’ median response was 2 (IQR: 2.5). Furthermore, we asked
to rate a second statement, “prior to participating in this study,
I often played Beat Saber”, on the same scale. Here, participants
reported a median response of 2 (IQR: 3.0). We additionally asked
participants for their dominant hand, and all were right-handed.

Since only four participants owned a Meta Quest 2 device, we
equipped the other twelve participants with a Meta Quest 2 head-
set for the duration of the study. These devices were exclusively
used for participation in the study. We instructed all four partici-
pants with their own private devices on how to install our back-
ground application and verified that the procedure was executed
correctly. For the other twelve participants, we provided them with
the head-mounted display with the application preinstalled by us.
Participants could participate in the study at their preferred loca-
tion; however, we instructed them to use the headset only in a safe
space (i.e., indoors without any objects nearby and by enabling the
guardian system). Furthermore, we explicitly asked participants not
to give the headset to any other person, as we otherwise would not
be able to distinguish the participants’ data from any other data.

Overall, the field study took eight weeks. We asked participants
to play at least twice a week on two distinct days three levels of
Beat Saber, particularly the song “Commercial Pumping” in the
game mode “Solo” on difficulty “Standard & Normal”. Additionally,
participants were able to play other songs in Beat Saber or other
VR games on the provided HMD; we did not restrict their potential
usage of the device. We chose “Commercial Pumping” as it has an
average number of beats per minute across all songs of Beat Saber,
a length of 2:21 minutes, and it includes dynamic obstacles that
players need to sidestep and duck under. Figure 1 shows the three
movements included in playing the song. Additionally, we chose
this song to acquire comparable data, as the potential number of
combinations for the song, its difficulty, and associated modifiers
in Beat Saber is very high. Following this, participants invested less
than 15 minutes per week in playing the game. The elicited data
was collected implicitly in the background.

3.5 Ethics
We received ethical clearance from our local institutional review
board at the University of Duisburg-Essen, Faculty of Business Ad-
ministration and Economics, for conducting our user study. The
findings in this work present insights into designing continuous
identification systems. The authors want to remark that it is ethi-
cally required that the user’s consent is acquired when employing
the presented findings in a real-world deployed system.

4 RESULTS
In the following, we first describe the generated data set, the ma-
chine learning approach, and the evaluation results.

4.1 Data Set
Overall, participants played the designated “Commercial Pumping”
song in Beat Saber 375 times during 119 sessions over the course of
eight weeks (see Figure 2), which corresponds to 4,520,828 sampled
frames and ca. 2.4 GiB of data3. One session corresponds to the
number of plays during a calendar day per participant. We recorded
the position and rotation of the headset and both controllers at a
sampling frequency of 90 Hz. Naturally, we obtained an imbalanced

3Our data set and background application are publicly available online at http://
research.hcigroup.de.

http://research.hcigroup.de
http://research.hcigroup.de


VRST 2023, October 09–11, 2023, Christchurch, New Zealand Liebers et al.

Figure 5: Movement data of participants P12 and P6 in comparison to each other from a side view (left) and top view (right). It
is visible that P6’s movements have more precision and are more targeted compared to P12. The Y-axis corresponds to “up”.
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Figure 6: Training bar plots in (a) and (b) show for 𝑁 = 15 and 𝑁 = 8 the cross-validated training performance of our model
as denoted by F1-score, obtained from a k-cross-validation with 𝑘 = 5. The model then is subject to testing as depicted in
Figures 7(a) and 7(b). Error bars show standard errors. (c) Visualization of the correlated values of F1 score and acquired game
score.

data set since every participant provided a different amount of data
(cf., Figure 3(a)). Thus, participants contributed between 11 and 50
songs (𝑀 = 25.53, 𝑆𝐷 = 9.30).

Next, we plotted and inspected the elicited raw data for outliers
to verify if the elicitation worked correctly. We found a few songs
that ended too early and verified the cause together with the par-
ticipant, which yielded that the song ended since the participant
involuntarily lost the game (e.g., by failing to evade the obstacles
when they appeared for the first time – cf. Figures 1(b) and 1(c)).
We furthermore found samples in the data set that ended right
after the start, and it turned out that participants started the song
mistakenly and canceled it immediately. Therefore, we set up a
filter that removes any song from the data set that has a shorter
duration than 10 seconds.

In this data set, each sample corresponds to one song. However,
the songs are grouped by a secondmetric, which is the “session” day,
denoting on which day since the start of the study the participants
played the song (e.g., the third day of participation corresponds
to the third session). Here, songs are grouped by calendar day,
as multiple songs were played per session. Thereby, participants
contributed between one and nine songs for a single day. Since
not all participants contributed the same number of sessions, we

use two subsets of the data for further analysis. First, we evaluate
our approach with all participants (𝑁 = 15) and with four sessions.
Second, we used another subset of 𝑁 = 8 and evaluated their
performance with eight sessions.

Figure 3(a) shows the differences in the number of provided
samples per participant in the data set.We see that eight participants
provided eight complete sessions played (P1, P2, P5, P7, P8, P9, P13,
and P15). For all 15 participants, we see that only four sessions were
absolved across all, as P4 imposes a lower limit.

We, therefore, opt for a split. We can create a balanced subset of
our data set for 𝑁 = 15 that is suitable for cross-validation and it
can be tested with sessions number two to four. Additionally, we
also train a model for 𝑁 = 8, using sessions two to eight for testing.
Consequently, we can create two subsets of our data set, one for
testing with three sessions and one for testing with six sessions,
where both subsets are balanced in terms of class distribution after
applying the sampling, which is particularly important for the
training of the Random Forest model.
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Figure 7: Average identification results over time, taken from the test set for a continuous identification system. Previous data
recordings are used as training data and subsequent data of each week for testing. The circular markers show the point in time
when the system was tested, and the point in time of training is not depicted.

4.2 Sampling and Preprocessing
To oppose the prevalent class imbalance within our data set, we
meet two precautions. First, we randomly sample a balanced num-
ber of samples from our data set every time we train or validate
our model. We apply a random undersampling for overrepresented
classes and a random oversampling to underrepresented classes.
Thereby, although the size per class differs (cf., Figure 3(a)), we
obtain a balanced number of samples per class. We set three as the
number of samples to sample to, as this number corresponds to the
number of repetitions that the song should be played per session in
our study. Our strategy first tries to sample without any redraws,
but if it cannot, it might draw samples with replacement (i.e., up-
sample). This approach, of course, comes with the drawback that
we cannot fully utilize our data set and that the over-sampling may
sample the same data twice. Second, as for a metric, we focus on the
weighted F1 score that would take any prevalent class imbalance
into account as it calculates the F1 score, which is the harmonic
mean of precision and sensitivity, weighted by the given support
per class.

In the next step, we unify the data shape of our elicited data.
Our data consists of three positional columns (“pos.x”, “pos.y”, and
“pos.z”), where “pos.x” corresponds to right and left, “pos.y” to the
height of the player and “pos.z” to the front and back. Here, “pos.x”
is positive to the right and “pos.z” positive to the front. Addition-
ally, we take the four Quaternion-based rotation coordinates into
account (“quat.x”, “quat.y”, “quat.z”, and “quat.w”).

As previous works suggest, the head is a strong biometric fea-
ture [3, 28, 30, 31, 37]. One particularly strong biometric property
that can be inferred from the head is the user’s height, correspond-
ing to the “pos.y”-feature of the head-mounted display. Also, an-
other side effect that can occur is the initial positioning of the user
within their tracking space which might be dependent on other
objects in the room, such as furniture. To resolve both issues, we
transform the head-mounted display’s and both controllers’ posi-
tional coordinates by calculating the offset vectors from the headset
to the respective controller by subtracting their absolute positional

coordinates. The resulting vector describes where the hands are
positioned in relationship to the head, but it does not bear any ab-
solute height information anymore, nor does it express information
about the user’s positioning within the tracking space. However,
we acknowledge that those vectors still might be loosely correlated
with a user’s height to a certain extent, as the arm-length correlates
with height, and this might affect the vector’s maximum length
(cf., da Vinci’s principle of the Vitruvian man). We, therefore, obtain
in total 18 features (two times “pos.x”, “pos.y” and “pos.z” for each
offset vector and three times “quat.x”, “quat.y”, “quat.z” and “quat.w”
for the rotation of the headset and both controllers).

As for the length of each sample, we find that the mean song
length is 11631 frames long (SD: 2788.58). Since this standard devi-
ation is high, we explore the data and find that it originates from
two factors: first, a number of songs have been exited early, either
voluntarily (i.e., the player stopping the game) or involuntarily (i.e.,
the player failing the song). Additionally, we find that the length
of each song also varies a little, most likely due to occurring frame
drops. Figure 3(b) depicts a histogram. To unify the length of data,
we choose to calculate the minimum, maximum, mean, and stan-
dard deviation for each of the 18 different features. Hence, we obtain
a feature vector that always corresponds to a length of 72 values,
encoding each feature column by four floating point values.

We furthermore inspect and visualize the elicited data during
this step. Figure 5 depicts the spatial movements of two players
plotted in a comparison against each other. Here, the differences
in style can be seen as the movements of P6 are more focused and
precise in comparison to P12. Figure 4 also shows the learning of
P12, where it is notable that P12 performs fewer movements after
sessions 7 and 14 in comparison to one, as for example, the head is
moving less in the later participation within our study. Hence, the
movements are becoming more focused and precise again.
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4.3 Machine Learning Model for Identification
and Training Process

To identify our participants, we utilize a closed-set Random Forest
multiclass-classifier from scikit-learn [41]. Random Forests were
used by previous works as means for user identification, and we
choose our procedure to be similar to previous work to enable
comparability [28, 42]. For this reason, we also intentionally leave
the model’s default parameters in place (e.g., 𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 = 100).
We also considered deep learning models for this task, as these
models are frequently used in behavioral biometrics [27, 29, 36, 44].
However, we refrained from using deep learning since Random
Forests allow for a feature analysis using their mean decrease in
impurity, and we wanted to obtain insights into the model’s learned
features. Finally, we train the Random Forest model with the feature
vectors obtained from our preprocessing and participants’ labels.

Due to the large amount of data we elicited in our study over
time, we opt for a Training-Validation-Testing-process for evaluat-
ing our machine learning model. The training set is used to train our
model, and the validation set is used to determine its performance
with regard to the given training set. In general practice, the vali-
dation set can be used to determine model parameters and model
performance during training. However, a test set must only be used
to test the model’s performance once and must not be used to tune
the overall process. Therbey, we stand in contrast to previous works
that elicited data mostly during a single study day [29, 33] or two
days [27, 28, 36, 42] and split their data into training and validation,
often not having access to a true distinct test set.

For the training of our Random Forest, we group the data by
each participant’s study session day, which is counted relative to
the beginning of their participation in the study. Here, for example,
the second study session is the second day when they participated
in the study, independent of the time that passed between the first
and second day. As each sample in the data set corresponds to a
song, we thereby group the samples by day. We use a 5-fold cross-
validation to evaluate our model within-session, choosing an 80%
to 20% split for training and validation, respectively. We randomly
sample the set from our data set and then apply the cross-validation
to this set. The ratio of samples belonging to each class is balanced
with regard to the classes, as otherwise, the model could be biased
by overrepresented classes. For evaluation between sessions, we
first train the Random Forest model with all balanced, sampled data
from the previous day or days in chronological order.

4.4 Single Training Session Approach
Initially, we create a traditional identification system by using the
data from the very first session to train and cross-validate our model.
We used all songs that participants provided except for one song
that was used for validation and performed k-fold cross-validation
with 𝑘 = 5. We use the two subsets of our data set for 𝑁 = 15 and
𝑁 = 8 for training our model, respectively. The training results are
depicted in Figure 6, and the testing results are shown in Figure 6.
The F1 Score drops from a cross-validated F1 score of 86% at the
beginning for𝑁 = 15 to 48% after testing with session 4, a difference
of -38 percentage points (cf., Table 2). For 𝑁 = 8, we find a mean F1
score of 83% at the beginning and 27% at testing with session 8, a
decrease of -56 percentage points (cf., Table 1).

4.5 Multi-Session Training Approach
Next, we create an identification system that is trainedwithmultiple
sessions, meaning we perform frequent re-training with new data
that our system is able to acquire. We, therefore, test with session
𝑛 and train with session [1, ..., (𝑛 − 1)] (e.g., to evaluate the data
recorded in week three, we train our classifier with the data of the
first two weeks). Figure 7 depicts the performance of the different
classifiers over time. Note that the blue lines in Figure 7 correspond
to the blue lines in Figure 8. Overall, we trained 3 classifiers for
𝑁 = 15 and 7 classifiers for 𝑁 = 8, evaluating their performance for
the subsequent weeks. Table 2 contains the results for four sessions
and 𝑁 = 15 and Table 1 for 𝑁 = 8 and eight sessions. Our results
show that a classifier trained more recently in the majority of cases
outperforms a classifier that has been trained earlier on fewer data.
We found a significantly strong negative correlation (Pearson‘s
coefficient) between the number of past days (i.e., the days between
training to test) and the F1-score (𝑟 (13) = −0.828, 𝑝 < 0.001).

4.6 Performance and Learning
Besides testing our data set for identification performance, we also
question whether participants got better at playing the game and if
their behavior would reflect this. We choose the logged game scores
of the game as a metric and determine the mean game score per
participant at the beginning of the study and at the end of the study,
i.e., during their first and last session. We subtract these values
and determine Δ𝑆𝑐𝑜𝑟𝑒 = 𝑀𝑒𝑎𝑛(𝑆𝑐𝑜𝑟𝑒𝐸𝑛𝑑 ) −𝑀𝑒𝑎𝑛(𝑆𝑐𝑜𝑟𝑒𝐵𝑒𝑔𝑖𝑛𝑛𝑖𝑛𝑔).
Next, we determineΔ𝐹1 = 𝑀𝑒𝑎𝑛(𝐹1𝐸𝑛𝑑 )−𝑀𝑒𝑎𝑛(𝐹1𝐵𝑒𝑔𝑖𝑛𝑛𝑖𝑛𝑔) alike
the score, by subtracting the F1 scores per participant.

We then correlate the Δ𝑆𝑐𝑜𝑟𝑒 values with Δ𝐹1 that we obtained
from testing with the last session for 𝑁 = 15. We find that the
change in-game performance and the identification metric have
a close to zero correlation (𝑟 (13) = −0.07), indicating no relation-
ship. We could not find a significant linear correlation (𝑝 = .792).
Figure 6(c) visualizes the correlation.

We furthermore consider the influence of participants’ regular
VR usage and whether they played Beat Saber often before on par-
ticipants’ performance and learning. To do so, we linearly correlate
their self-reported VR and Beat Saber experience (five-point Lik-
ert items) with the maximum in-game score they acquired in Beat
Saber during their very first day of participation in the study given
the questions “prior to participating in this study I used VR regu-
larly” and “prior to participating in this study, I often played Beat
Saber”. We find a strong positive linear correlation between their
previous VR usage (𝜌 (13) = 0.7333, 𝑝 = 0.0019) and their acquired
score on the first day and also a strong linear correlation between
their previous frequency of playing Beat Saber before the study and
their acquired score (𝜌 (13) = 0.8490, 𝑝 < 0.0001). We repeat this
procedure by correlating participants’ maximum in-game scores
of their last participation day of the study for the same respective
Likert items and find again two strong positive linear correlations
(VR usage: 𝜌 (13) = 0.5193, 𝑝 = 0.0473 and frequency of playing
Beat Saber : 𝜌 (13) = 0.6973, 𝑝 = 0.0039). Participants’ scores median
increase is 10815 points (IQR: 31880) between their first and last
participation in the study.
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Table 1: Mean (Standard Deviation) of the identification results (F1-score) for 𝑁 = 8 participants for a continuous identification
system. The training column shows the origin of the training data.

Testing
Training Session 2 Session 3 Session 4 Session 5 Session 6 Session 7 Session 8

Session 1 0.71 (0.33) 0.65 (0.41) 0.55 (0.41) 0.42 (0.37) 0.48 (0.41) 0.34 (0.44) 0.27 (0.39)
Session 1 to 2 0.96 (0.08) 0.70 (0.34) 0.57 (0.39) 0.73 (0.34) 0.57 (0.40) 0.34 (0.40)
Session 1 to 3 0.78 (0.33) 0.62 (0.39) 0.82 (0.34) 0.57 (0.38) 0.49 (0.44)
Session 1 to 4 0.74 (0.33) 0.91 (0.19) 0.59 (0.42) 0.57 (0.48)
Session 1 to 5 0.83 (0.35) 0.55 (0.42) 0.61 (0.51)
Session 1 to 6 1.00 (0.00) 0.75 (0.46)
Session 1 to 7 0.71 (0.44)

Table 2: Mean (Standard Deviation) of the identification re-
sults (F1-score) for 𝑁 = 15 participants for a continuous
identification system. The training column shows the origin
of the training data.

Testing
Training Session 2 Session 3 Session 4

Session 1 0.71 (0.42) 0.63 (0.42) 0.48 (0.34)
Session 1-2 0.81 (0.26) 0.48 (0.36)
Session 1-3 0.62 (0.36)

4.7 Feature Analysis
We conducted a feature analysis to understand what movements
contribute most to our classifiers. We analyzed the resulting five
most influential features for the 𝑁 = 8 classifiers by determining
the mean decrease in impurity (MDI) of the Random Forest, which
ranks features that the Random Forest was trained on by their
importance [26]. We found that for the first classifier (i.e., the one
trained with the data from the first session), the head rotation
is three times among the five most influential features. For the
classifiers that include data from other sessions, the head rotation
was never part of the five most influential features. Additionally,
we found that the rotation of the right controller is present among
each of the five most influential features for each classifier.

5 DISCUSSION
In the following, we discuss our findings concerning the temporal
stability of behavioral biometrics. First, we reflect on classification
performance and thereafter discuss different training strategies. We
conclude with limitations and research directions for future work.

5.1 Classification Performance
We overall achieved an identification performance, denoted by F1-
score, of up to 86% for a cross-validated single-session and 71%
for a two-session evaluation. Additionally, we find that it largely
degrades over time, as seen in Figure 8. This sometimes happens
monotonously falling (cf., Figure 8(a)), but there can also be outliers
in the overall trend (cf., Session 6 in Figure 8(b)). The reason for this
bump remains, unfortunately, unclear: it might be a random effect
that the rules for the Random Forest that were created during the

(a) 𝑁 = 15 (b) 𝑁 = 8

Figure 8: Average identification results for training with only
the first session (Sess.) denoted by the F1 score. The very first
session is used as training data, and the subsequent data of
each further study participation session is for testing the
classifier. The triangle marker depicts the point in time with
which the model was trained and cross-validated (only data
from the first session went into training and testing). The
circular marker indicates the session with which a test of the
classifier was performed (the classifier was trained with the
data of the first day and tested on the subsequent ones.

very first training session suddenly apply slightly better to Session
6 compared to Session 5. By checking the data, we found that a
single participant’s performance did create the increase in Session
6. Although we excluded data with obvious flaws (e.g., participant
12 changed the height from 1.5m in every other song to 2.0m in
one specific song), the type of study might add further noise to the
data (e.g., participants are disturbed while playing) which is limited
in lab-based user studies.

We also wondered whether participants’ learning of Beat Saber
would influence the identification performance.While we could find
strong statistically significant correlations given participants’ prior
knowledge of VR and Beat Saber with regards to their performance
as denoted by the in-game score at the beginning of the study,
we also saw that this correlation became less strong towards the
end of the study. Thus, it turned out that the participation led to
an approximation of participants’ performance over time, yet the
correlation between participants’ Δ𝑆𝑐𝑜𝑟𝑒 vs. Δ𝐹1−𝑀𝑒𝑡𝑟𝑖𝑐 did not
turn out to be statistically significant. Thereby, we could not find
evidence for an influence of participants’ in-game performance
denoted by the score on the identification rate.



VRST 2023, October 09–11, 2023, Christchurch, New Zealand Liebers et al.

5.2 Upfront Training vs. Multi-Session Training
Our results show that classifiers trained with more recent data
generally perform better than classifiers trained with the initial
data. Thus, continuous training improved the stability of behavioral
biometric systems. Our findings also suggest that the features influ-
encing the classifier most change after the first session. While most
research conducted studies with at max two sessions, it remains
unclear if their results change in a similar way and if that influences
identification performance. In a practical scenario this would mean
that such a system requires constant re-training. This has ethical
implications, such as users being aware of the system and how their
data is processed. It is important that this processing occurs with
the consent of the individuals involved, which is a key requirement
for all biometric identification systems for personal identification.

5.3 Limitations
We acknowledge the following limitation to our study. Studies
outside the lab after highly influenced by the context in which
the study is conducted. Since we conducted a remote field study,
we had little to no control over the context in which participants
played Beat Saber . While the VR HMD shielded participants from
direct influences of their environment, other factors still came into
play. Participants, for example, did not equally contribute to our
data set. Reasons included being on vacation during the study
or forgetting to play. This also influenced the length of the time
period between the two sessions. At last, as all our participants
were right-handed, we did not evaluate our approach on a mixture
of left-handed and right-handed people, which might impact the
results. Another inherent methodologic drawback of conducting a
remote field study is the limited control of participants’ usage of
the devices. We did not ask our participants to use the VR device
only for the study; they potentially could play other games in VR or
other levels in Beat Saber . We acknowledge that this could influence
our results. However, we see this as an essential part of the chosen
methodology that yields data obtained under realistic conditions.

5.4 Future Work
In this paper, we explored spatiotemporal user data elicited with
the VR game Beatsaber over the course of eight weeks. We will
continue to collect user data to investigate the long-term stabil-
ity of behavioral biometrics and continue to update our data set.
Moreover, we plan to share our modified BeatSaber version with a
wider audience, deploying it in the wild. Thereby, we aim to not
only investigate the effect of time but also consider a larger sample
population. Finally, in this paper, we focused on explainable ma-
chine learning algorithms that require manual feature engineering.
In the future, we will investigate deep learning with a sliding win-
dow approach to examine the upper limit for user identification
performance [25]. The data elicited in our study was obtained using
an HMD with controller tracking and the Beat Saber application.
Another research opportunity would be to see whether comparable
results could be obtained from other application contexts or from
devices that make no use of controllers. Moreover, the release of
our data set allows for further experimentation; for example, an
analysis of the hysteresis component in the data could be conducted
to understand the potential lag of identification performance with
relation to participants’ in-game performance.

6 CONCLUSION
In this work, we report on a remote field study that identifies𝑁 = 15
participants while playing Beat Saber. Our work contributes to the
understanding of behavioral biometrics for virtual reality by pro-
viding insights into a mid-term study which we evaluated with
up to 8 sessions per participant. We found that the identification
performance decreases over time and that continuous training with
recently recorded data can improve the tracking performance. Our
results shed light on the influence of multiple sessions on identifi-
cation performance and how continuous retraining of classifiers
can help to improve identification systems.
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