
Design Guidelines for Reliability Communication in
Autonomous Vehicles

Sarah Faltaous1,2, Martin Baumann3, Stefan Schneegass1, Lewis L. Chuang2,4

1University of Duisburg-Essen – HCI Group – {firstname.lastname}@uni-due.de
2Max Planck Institute for Biological Cybernetics – {firstname.lastname}@tuebingen.mpg.de

3Ulm University – {firstname.lastname}@tuebingen.mpg.de
4LMU Munich – {firstname.lastname}@um.ifi.lmu.de

ABSTRACT
Currently offered autonomous vehicles still require the
human intervention. For instance, when the system fails
to perform as expected or adapts to unanticipated sit-
uations. Given that reliability of autonomous systems
can fluctuate across conditions, this work is a first step
towards understanding how this information ought to
be communicated to users. We conducted a user study
to investigate the effect of communicating the system’s
reliability through a feedback bar. Subjective feedback
was solicited from participants with questionnaires and
semi-structured interviews. Based on the qualitative re-
sults, we derived guidelines that serve as a foundation
for the design of how autonomous systems could provide
continuous feedback on their reliability.

CCS Concepts
•Human-centered computing → Human com-
puter interaction (HCI); HCI design and evalu-
ation methods; User studies; Laboratory experi-
ments;

Author Keywords
situation awareness; interface design; autonomous
vehicles; reliability display; human-machine partnership.

INTRODUCTION
Recent advances in automotive technologies allow tasks
that were previously performed by drivers to be carried
out by a constellation of sensors and artificial intelli-
gence [33] (e.g., autopilot). Most of these currently avail-
able technologies and most of the near future technolo-
gies require the user’s intervention when the automation
fails [6, 16, 38]. At the same time with these technologies
the driver is granted features that can perform complex
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perception and decision-making tasks [3] (e.g. sign recog-
nition). These features allow the driver to be engaged
in different tasks other than driving [12]. Consequently,
the driver becomes a supervisory operator [3, 28, 35],
who is barely involved in the driving task [16] and mostly
identified as being out-of-loop [3].
To date, much research has been performed on how to
bring the driver back into the loop when vehicle automa-
tion encounters a situation that it cannot handle safely,
that is if it reaches a system limit situation [8, 17]. Such
research implicit assume that autonomous vehicle sys-
tems are entirely reliable partners; they can either handle
a situation or are able to recognize when they are not,
subsequently issuing a notification to introduce the driver
back into the loop to handle the situation instead. In re-
ality life, vehicle automation is more likely to operate on
the basis of probabilistic certainty. In other words, their
reliability will vary in accordance with their changing
levels of certainty in coping with driving conditions that
can be expected to vary continuously. Variability in an
automated vehicle’s reliability could result from at least
two factors. First, it could be related to technological
limitations (e.g., sensors’ imprecise input registration,
imperfections of the signal transmission in electronic cir-
cuits, analogue to digital conversions, etc) [20]. Second,
it could result from the unpredictable behaviour of fellow
drivers (e.g., sudden lane changing) [9]. These factors
will undoubtedly influence the reliability (or certainty)
of vehicle automation in safe vehicle handling. To some
extent, automated vehicles will have access to understand-
ing their current levels of reliability. For example, inputs
such as the accident statistics of a given road or the con-
fidence bounds of sensor readings. Therefore, users could
benefit from being informed of an autonomous vehicle’s
current level of reliability. This could allow users to adapt
their supervision strategy and level of secondary task en-
gagement, so as to be able to intervene should vehicle
automation fail. To the best of our knowledge, the topic
of reliability communication in autonomous vehicles has
yet to be investigated in depth.
In this paper, we explore how autonomous vehicles can
communicate it’s current level of system reliability to the

Proceedings of the 10th International ACM Conference on Automotive User Interfaces and Interactive Vehicular
Applications (AutomotiveUI ’18), September 23–25, 2018, Toronto, Canada .

258



user. We investigate how users might perceive the useful-
ness of such a communication system, using a simulation
scenario that focuses on an automated collision avoid-
ance system. The level of automation simulated could be
loosely described as SAE L2/L3 given that our partici-
pants were expected to perform a primary non-driving
task but were expected to intervene when automation
failed. We developed a continuous visual feedback system
that communicated the levels of automation reliability in
order to understand how users responded to such commu-
nication. Through implementing it in a realistic driving
simulation scenario, we elicited user feedback via ques-
tionnaires, and semi-structured interviews, which serve
as a basis for general guidelines and recommendations
for communicating a system’s reliability to users of au-
tonomous vehicle systems.

RELATED WORK
In the real world, no system is perfect. It means that
any system can and will fail at some point. As it is
not feasible for the engineering of automated systems to
exhautively consider the infinite possibilities that could
transpire across different use scenarios, designing for ef-
fective human intervention will continue to be a crucial
component of automated systems [37]. To understand
how humans interact with automated systems (i.e., au-
tonomous vehicles), it is necessary to first consider how
user trust engenders reliance on automation.

Trust and Reliance in Autonomous Systems
Reliance is categorized as a behavior, while trust is an
attitude [5] carried out by the human towards automa-
tion [36]. Both are different sides of the same coin, which
can determine how users interact with a given system [32].
User trust in a Human-Machine Interaction (HMI) can
be considered by comparisons to a Human-Human Inter-
action (HHI) [14, 25, 30]. To realize a certain task [36, 5,
41], for example, driving safely [16], both the human and
the autonomous vehicle should form a team [14].
Muir stated that trust in HHI and HMI is comparable [31],
in terms of predictability (i.e., action anticipation), de-
pendability (i.e., action execution consistency) and faith
(i.e., system’s reliability) [25, 36]. For instance, whenever
a driver turns an automatic parking feature on, he or
she knows that the final target is entering the selected
parking spot. The driver also knows that the car is going
to be performing a specific sequence of maneuvers to
achieve that. By using this feature, drivers entrust the
system to do this task on their behalf.
Both the autonomous system and the user possess abili-
ties and knowledge that the other may not. Therefore,
each of them receives the changes occurring in the driv-
ing environment with different variance [39]. Drivers are
more likely to rely on automated aid if they trust it to
perform more reliably than their own performance (e.g.
back-parking sensors in estimating the distance to col-
lide). However, the converse could also be true. If they
believe that their performance is likely to be superior,

given their experience with this automated feature, they
are unlikely to rely on automation [14, 30]. In both cases,
they cautiously choose whom to rely on and trust (e.g.,
their performance vs. the system’s) [14].

Reliability Communication
In a changeable precarious world, alerting systems and
decision aids can be expected to fail in providing correct
feedback. This leaves room for uncertainty and risk [22].
Flawed alerting systems may result in two different types
of errors [27, 40, 42]. First of all, errors that result from
an over-reliance on automation, which results in a lack of
driver attention to the road and how vehicle automation
is functioning. Consequently, this could prevent the drive
from intervening appropriately [40]. A commonplace
and relatively benign example would be when the driver
misses to exit the highway as a result of over-reliance on
a navigation system that does not update reliably [42].
Another type of error occurs from over-compliance, that
is when the operator accepts the false alarms and rec-
ommendations of an automated system. For instance,
entering a one-way road from the wrong direction based
on the navigation system recommendations [42]. In both
cases, the consequence of system error is problematic.
However, it has been noticed that the latter is more
grievous, as it eventually leads to total ignorance of the
alert [40].
In general, people tend to invest more trust in au-
tonomous systems that show more collaboration in a
helpful and understandable manner, regardless of their
actual level of reliability [5]. Dzindolet and colleagues
showed that people did not refrain from using an unreli-
able system even though they were aware of its unrelia-
bility [13]. Another study reported similar findings when
user interventions during system failures, varied with
presenting alarm rates of changing reliabilities (e.g., 20,
25 and 70% true alarms). As the researchers showed that
most of the participants (90%) response rates matched
that of the expected probability of true alarms (e.g.,
probability matching) [7].
Communicating the changing reliability of an automated
system can be expected to improve user interactions with
automated vehicles, if users are able to accept and effec-
tively interpret this information. In order for users to
rely on autonomous vehicles, it is important for them to
continuously moderate their levels of reliance and allo-
cate their available resources according to the changing
circumstances and capability of vehicle automation [5,
39]. The work of Parasuraman and colleagues [31] sug-
gests that users are sensitive to variable feedback by
evaluating the reaction times of system failure detections.
Specifically, users were faster to respond to system fail-
ures when confronted with variable feedback as opposed
to constant feedback. These results agree with those
reported by Helldin and colleagues who showed that par-
ticipants were able to shift to manual control faster when
presented with variable feedback compared to when no
feedback was issued [21].
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Figure 1: Experiment setup with the feedback bar
mounted on top of the tablet showing the non-driving
task.

It has been suggested that good automated system de-
signs ought to consider communicating possible error
values [29]. Communicating the varying reliability of an
automated system would engender more trust even if
the system fails to perform as expected on occasion [14,
22]. Thus, it is observed that the driver’s trust and the
system’s reliance is greatly influenced by the amount of
data communicated through the system’s feedback (e.g.,
accuracy) and the clarity and ease of understanding the
presented cues (e.g., visual, auditory, or tactile) [30, 36].

USER STUDY
We designed a user study to examine how the chang-
ing reliability of autonomous vehicles could be continu-
ously communicated to users engaged with a non-driving
task. Specifically, we simulated use of an SAE level 3
autonomous vehicle whereby a user is still expected to
intervene when the autonomous system does not operate
as designed. Visual feedback was continuously provided
to communicate the reliability levels of the system. To
date, the design of reliability communication has not ben-
efited from much investigation, especially in the context
of autonomous vehicles given their commercial scarcity.
Thus, the goal was to understand the subjective concerns
of potential users and the conditions whereby feedback
on system reliability would be appreciated. Pragmati-
cally speaking, this contributes towards recommended
guidelines for the subsequent designs of communicating
system reliability.

Apparatus
The simulation consisted a driver seat with wheel and
standard pedals, three adjacent displays, and a periph-
eral touch computing device (iPad2, iOS 9.3.5.) that was
positioned to the right of the user (Figure 1). A cus-
tomized driving scenario was programmed using Unity3D
(5.0.0f3) game engine, which was presented on the dis-
play and received pedal inputs. The peripheral device
independently presented the user with a standardized
non-driving working memory task, which was the primary
occupation of our participants. Most importantly, visual
feedback on the system’s reliability was communicated

to the participants using a 30 LED strip that was hor-
izontally positioned above the peripheral device. This
LED strip was controlled with an Arduino UNO.

Driving Scenario
In the presented scenario, participants experienced sit-
ting in an autonomous vehicle that travelled on the right
lane of a straight two-lane road at a constant speed of
108km/hr. A lead vehicle would appear occasionally,
approximately every 35secs, which travelled at a slower
speed of 32km/hr, prompting the ego-vehicle to automat-
ically execute an overtaking manoeuvre on the left lane.
This manoeuvre was delayed if the ego-vehicle detected
another oncoming vehicle in the left lane, travelling at
108km/hr in the opposing direction. The ego-vehicle
could experience two possible failures. It could either fail
to detect an oncoming vehicle and perform an overtaking
manoeuvre or it could falsely detect an oncoming vehicle
when there was none and wait for 7secs. During these
failures, participants could intervene and override these
erroneous actions by stepping on the brake or accelerator
pedals respectively.
Participants experienced the same scenario twice, under
two different levels of external visibility. The first level
represented clear weather and permitted a visibility range
of 995m ahead (Figure 2a). The second level represented
foggy weather and permitted a visibility range of 200m
ahead of the autonomous vehicle (Figure 2b).

Non-driving Task
To simulate a cognitively engaging task that was simi-
lar to the potential activities that users of autonomous
vehicles might perform, our participants were required
to perform a working memory span task on the periph-
eral computing device [11]. Specifically, each participant
was presented mathematical operations that were either
correct (e.g., 2+16=18) or wrong (e.g., 7+11=12), which
they had to respond by tapping a "Yes" or "No" button
respectively. A letter of the Latin alphabet was presented
for approximately 1sec above the presented operation.
After three operations were presented, participants were
required to recall the three letters that were presented.

Reliability Communication
For the reliability communication, we chose a half meter
30 LED RGB strip to be connected to Arduino UNO
micro-controller programmed using Arduino. The strip
was connected to an external 5V power source and was
placed horizontally just above the tablet used in the non-
driving task. This allowed the user to see both the tablet’s
display and the feedback all in one frame (Figure:1).
The LED strip that we used to communicate the reliability
values, with one color at a time, a color gradient from
red to green. The hue values for these colors ranged
from 0 to 100. Each different color shade presented a
reliability level, consequently, an 80% reliability would
represent a yellowish green color (i.e., hue value of 80).
As we wanted to know if a certain displayed color range
would affect the perceived reliability, we separated the
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(a) Non-foggy condition with a visibility range of 995m. (b) Foggy condition with a visibility range of 200m.

Figure 2: The two weather conditions, which permit different visibility ranges ahead of the autonomous vehicles

Figure 3: Sample of the waves generated from using the
mean of seven sinusoidal signals across 1000s. The values
range from 10 to 50.

communicated reliability values into two levels. The first
level is with low values ranging between 10% to 50% (i.e.,
red to yellowish orange). The second level is with high
values ranging between 50% to 90% (i.e., yellowish orange
to green). The displayed value (i.e., color) was updated
each 1s. This was implemented to match the real-world
continuous uncertainty values change.
The presented values were generated from an algorithm,
in which we calculate the mean value of seven sinusoidal
waves having different phases and frequencies. We used
prime numbers for phase shifts and frequencies to avoid
any harmonic wave generation (Figure 3). We imple-
mented the signal approach to avoid any sudden jump if
a random representation was picked and to give the users
a sense of the system’s reliability in a consistent smooth
way. It is important to mention that the displayed val-
ues were not linked to the real system’s accuracy. The
goal was just to detect whether or not the drivers would
be affected by the reliability communication, as well as
examining a new design approach to do so.

Study Design
We designed two experimental simulation blocks, in which
we displayed the two weather conditions separately. We
wanted to further examine the effect of communicating
different color ranges in the reliability feedback. We di-
vided each block into five intervals, where we manipulated

the number of presented encounters and the displayed
reliability values. Two of which had the same schema, in
which we displayed 10 encounters each, with 5 encounters
having an oncoming vehicle on the opposite lane. Starting
from the beginning till the end of each of these intervals,
the reliability feedback bar displayed either high range
or low range values. We chose the system’s accuracy
to be 70% in these intervals, consequently, out of the
10 encounters 3 would be of failing. To avoid any fixed
structure that the participant might notice, we added
separating intervals, in which random number of encoun-
ters between 1 and 5 is presented with randomly selected
scenarios. The LED strip in these intervals showed the
corresponding accuracy value. Meaning, if the upcoming
scenario reflects a system failure, the accuracy bar dis-
played low range values ranging from 10% to 50% of the
predetermined hue gradients. Similarly, if the upcoming
scenario was of a succession overtake, the high range val-
ues ranging from 50% to 90% were displayed as discussed
in the feedback visualization design (Figure 4).

Participants and Procedure
Twenty participants (6 female and 14 male) participated
in this study and were remunerated 8euros/hr. They
had different nationalities (i.e., 2 Americans, 7 Germans,
5 Italians, 3 Egyptians, 2 Dutch, and 1 Brazilian). Their
ages ranged from 19 to 57 years old (M = 29.65, SD =
8.86) and all participants had a valid driving license for
at least 2 months.
The study took approximately 90mins to complete and
consisted of three parts: familiarization, use scenario,
interview.. Before this, all the participants read a study
description and explained the study to the experiment in
their own words. They were corrected for any misunder-
standing prior to providing signed consent.
In this user study, the participants were mostly required
to perform a non-driving task. In addition, the partic-
ipants were also required to monitor the performance
of the highly autonomous driving system and to inter-
vene when the system makes a wrong decision. The
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Figure 4: Block design that starts with representing random scenarios while communicating the right reliability values.
In between, the reliability communication is once set to be constant high or constant low with reliability level of 70%.

first part was training, where they started with the span
task. Each participant was given a 3mins training, just
to get familiarized with the task. Later, two training
blocks of the non-foggy condition, five trials each, were
presented on the simulator. The blocks were designed
to give the participants the sense of how the accuracy
bar works. In that context, one training block with a
constant high accuracy value 80% was presented, dis-
playing a scenario with one case of system failure out of
the five trials. The other training block was with a low
accuracy value 20%, displaying four failures of different
scenarios out of the five trials. Both training blocks were
with non-foggy condition. After finishing the training
part, we presented the two different experimental blocks,
which depict the two weather conditions. All the pre-
sented blocks were counter-balanced, to avoid any effect
that might be caused by presenting a certain sequence.
After being done with the two experimental blocks, we
interviewed the participants and asked them to fill in a
questionnaire.

RESULTS
Our study focused on the participants’ assessment of
the communicated reliability. To do so, we gathered
their feedback using post-experiment questionnaires and
conducted semi-structured interviews, to give us an in-
sight into what users would be expecting from a system’s
feedback.
In the questionnaire, we first asked the participants to
indicate on a Likert item from 1 (not much) to 5 (a lot) to
which extent they trusted the system and to which extent
they were pleased with the system’s performance. Almost
all the participants chose the same value for the two
attributes (i.e., median=3 ). After that, we asked them
if the system’s performance improved block-wise. The
main aim behind this question was to detect the effect of
communicating reliability values differently (i.e., different
color ranges). Although most of them (90%) indicated
that no difference was noticed in the car performance,
they mentioned that they trusted the car more when the
feedback bar was displaying the "reddish range" as they
called it.
In the interview, the participants were first asked whether
or not they think that reliability values should be commu-

nicated to the users in autonomous systems. All of them
(100%) said yes, with relating the reasons to one of these
two aspects. The first aspect is safety, as some of them
thought that it is safer to be given the choice to take
over if the system is not quite sure about its performance.
Therefore, preparing the driver beforehand to a potential
Take Over Request (TOR) through this call for attention
is more assuring. The second aspect relates more to the
trust issue, as highlighted by some participants, that in
order for them to trust the system, there has to be a
clear communication that reflects the system’s state.
When we asked the participants about in which circum-
stances they would be expecting the system to communi-
cate the reliability values, most of them (70%) indicated
that it should be communicated in risky situations. These
are the situations where the system recognizes a failure
or as described by one of the participants " when the
situation is on the verge of being dangerous". These an-
swers were further supported by their definitions of the
reliability communication. As they all indicated that
the reliability communication is used to indicate risky
situations in case of "doubtful" performance as referred
to by one of the participants.
Regarding the design aspect, they all (100%) suggested
different designs using various modalities. However, two
main points were the focus of the majority. The first
point is the importance of using a multi-modal feedback
design. They reflected that it is important for them to
be able to differentiate between a TOR and a continuous
feedback about the system’s state. The second point is
the importance of using any modality other than visual
communication. They justified their answer by saying
that in real life, as well as in the current experiment, they
would be visually "over-whelmed" by other tasks.
Afterwards, we focused on the result of the current design.
Concerning the displayed colors, most the participants
(70%) said that it was hard for them to notice the dif-
ference between the various shades. For them, it was
either "red or yellow or green". They even translated
this three colours to three states. The red reflected an
urgent take-over request, the yellow as a warning about
a possible failure and consequently an attention request
and the green as all good. They cited their inability of
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perceiving the various colors to the high workload of the
non-driving task that required most of their attention.
They also mentioned that the high update rate of the
displayed colours confused them about the communicated
value.
In an attempt to know what would be a suitable update
rate for them. They pointed that it’s a situation depen-
dent value. All of them said that it definitely needs to be
in a real-time continuous form in risky situations, that
is predefined by a specific reliability threshold value. In
general, as they stated before it is good to have this clear
communication. However, "Not much, otherwise I will
not trust the car at all" as one of the participants said.
Second, positioning the LED strip over the tablet didn’t
serve the purpose of easy-reach communication as we
expected. One participant said: "It was easier to shift
my eyes directly to the road if I’m to shift my eyes any-
way". Another comment was: "the bar position was on a
different level not where I am focusing. It was an unre-
liable non-noticeable thing. It could be embedded in the
wind-shield for example".
The last point that we were interested in knowing, was
their opinion about granting the driver the option of
turning the automation off. Some of them answered as
per their own personal preference, it is a direct yes. As
they would first need time to trust the system before
they totally hand it the ultimate control. Second, they
would like to feel superior to the system, in other words,
controlling it not being controlled by it. For the general
good, their answer was no, the automation feature should
never be turned off. From the legal aspect, who would
be the person to blame in fatal failing scenarios (i.e., an
accident in case of off collision avoidance feature in a fully
autonomous vehicle.). Another aspect is the fairness of
the driving performance under different circumstances
(i.e., reaction time in manual driving versus autonomous
system).

IMPLICATIONS
User experience and acceptance.
When asked about the liberty of automation use and
disuse, most participants indicated that they want to be
given the chance to either turn it on or off., as they don’t
like to be forced to use a new technology, especially if they
don’t have any previous experience with it. They fur-
ther elaborated that they lacked experience with system
behaviour and the provided feedback. Therefore, they
required more time before they were ready to grant the
automated system "ultimate control of their lives". This
agrees with what Dzindolet et al. discussed, namely that
distrust in automation can arise from a lack of experience
and understanding of how a given system behaves and
operates. This can lead to system disuse, particularly
when system failures occur that the operator cannot ex-
plain [14]. Based on that, we recommend applying one
of the following approaches: (a) Providing tutorial pro-
grammes that include multiple scenarios that users are

already familiar with in order to increase the intuitive-
ness of the communication display. This could familiarise
targeted users with new technologies, (b) Monitoring a
training phase whenever a new technology is offered. In
this regard, users will have to use the technology in an
incremental scale (e.g., using it for 20% of the time in
the first week, 40% in the second week .... etc.). In
brief, applying any training approach is highly favoured
as it would grant the users (i.e., old generations) more
familiarity with an automated system’s performance and
interface. As for new generations, part of passing a driv-
ing test could be examining their awareness with the
autonomous system feedback.
Although the presented research showed the importance
of communicating the autonomous’ system reliability
value, the question whether the car manufacturers would
want to communicate the system’s reliability at all still
needs to be investigated. Communicating the reliability
values would highlight the system’s limitations, which
could also affect the users’ trust in the system and in a
specific manufacturer. As a result, the use (i.e., buying)
or disuse of such systems might highly depend on the
user acceptance of such a new system. This puts the
car manufacturers at risk, in-case of being the first to
offer. Furthermore, it induces high pressure, in-case of
competing with the other manufacturers, to achieve the
best performance credibility.

Categorical perception of reliability levels.
Participants’ feedback from the interview revealed that
they perceived far fewer discrete levels of system reliabil-
ity than the full spectrum that we strove to communicate,
given the availability of the color levels of our visual dis-
play. In other words, they perceived color ranges categor-
ically instead of continuously. In fact, research in color
perception has demonstrated that our visual system sepa-
rates colors into discrete categories rather as a continuous
function of luminance [18]. Nonetheless, system reliabil-
ity is a continuous parameter that automated systems
compute and can provide as output. Therefore, more
research is necessary to bridge this continuous measure
of system reliability that is available to the categorical
perception of what humans can perceive in the first place.
Two options are available that are not mutually exclu-
sive: (a) the use of a display parameter that humans
can perceive continuously, (b) assessing the resolution
of system reliability that users are able to understand
and appreciate being informed about. To sum up, we
find that just because system reliability is available as a
continuous and high-resolution measure does not mean
that humans need to or can perceive this information.

Feedback modalities.
On the one hand, several observations of the users be-
haviour towards the study indicated that our participants
preferred to have multi-modal communication in critical
situations that required their immediate attention. On
the other hand, our participants also mentioned that
they preferred a single modality for reliability commu-
nication and opined that visual communication was the
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least "annoying" display modality, particularly for long
journeys. A separate early study arrived at a similar
conclusion [26], which investigated driver’s workload vari-
ability when presented with warning information across
different modalities (visual vs. auditory vs. multi-modal).
Their result, based on the SWAT workload assessment,
indicated that the perceived workload was least in the
multi-modal, with a higher value in the auditory and
the highest value was scored in the visual (i.e., 4.96 vs.
5.00 vs. 5.73 respectively.). Burke et al. [10], showed
similar conclusion when they examined the driver’s per-
formance presented visual-tactile (VT) vs. visual only
(V) and visual-auditory (VA) vs. visual only (V). They
demonstrated that the performance was improved in the
two examined multi-modalities compared to visual only
(For effect size g in VT-V = 0.38 and g in VA-V = 0.42).
These findings are further supported with an interna-
tional survey carried out by Bazinlinsky et al. [4], as they
showed that the participants’ preference in the used TOR
(Take-Over Request) modality was related to the situa-
tion urgency. They highlighted that multi-modal TORs
(i.e., auditory, visual and vibrotactile) were most favoured
in the high-urgency situations. Hence, we suggest a multi-
modal design for TORs and visual communication for
continuous system’s reliability.

Adaptive to the non-driving task.
When asked about the different display modalities that
could be employed to communicate system reliability, par-
ticipants pointed out that the feedback modality should
differ from that of the non-driving task. In a previous
study [34], no significant effect was found relating the
reaction times to the modality of the communicated feed-
back and that of the non-driving task. Nonetheless, they
recommended further research on understanding potential
interactions between situation urgency and the nature of
the non-driving task (e.g., hands-free task). This goes in
line with the findings of Gold and colleagues who showed
that the take-over performance in an autonomous vehicle
was affected by the non-driving task nature (e.g., high
demanding cognitive task) and the situation severity [15].
More specifically, the cognitive demanding tasks hin-
dered the take-over performance in the case of cognitive
demanding take-over situations, more than the situations
where a take-over was easy well practiced. Based on pre-
vious findings and the current feedback, we conclude that
adapting the communicated feedback to the nature of the
non-driving task—for example, in terms of its cognitive
demands—could result in a better overall performance.
However, we do not recommend adapting feedback modal-
ities to situation severity, as this could lead to even more
confusion from the users’ perspective.

Reliability update rate.
Our user feedback highlighted that there should be a
clearly communicated threshold that defines the criti-
cality of the situation. Previous studies on autonomous
systems have shown that reliability values depend on the
probabilistic error values that can be computed from dif-

ferent approaches (e.g., stochastic reachability approach
for separate time zones based on the traffic participants’
behaviour [2]). A simple example is an autonomous ve-
hicle that drives in the right lane and turning left in
a two opposite-direction road [2]. On the one hand, if
the stochastic reachable set indicated a close intersecting
range to the planned path of the autonomous vehicle, the
situation should be marked as unclear and, therefore, the
system’s actual reliability should have a high-reliability
update rate that changes with the proximity range to
this computed set. On the other hand, if the planned
path is marked as clear and safe, a slower update rate
should be communicated, which would be granted less
attention. Therefore, we recommend investigating the
minimum threshold, for different systems (e.g., active
cruise control), after which the participants should have
a continuous update rate of the system’s reliability values.

LIMITATIONS
We acknowledge the following limitations to our work.
To begin, we generated specific reliability values using an
algorithm. Although we aimed at creating a realistic val-
ues, we based these values on the results of an algorithm
and not on real world data. Thus, the reliability values
communicated to the participants were not linked to the
real system certainty. Nevertheless, we opted for using an
algorithm to be able to show a wider range of reliability
values without creating a simulation environment that
was too complex, which could lead to further distraction
in the user.
Next, we provided a single display of system reliabil-
ity that is presumably aggregated automatically from
multiple sensor inputs (e.g., LIDAR, vehicle-vehicle com-
munications, stereo cameras, traffic statistics, etc). It
could be possible that users might prefer multiple reli-
ability displays, each related to a given sensor. Recent
research has shown that users prefer automatic aggrega-
tion of multiple data sources with related uncertainty,
but that this preference varies with the perceived im-
portance of the information that is presented [19]. It is
worth noting that single-sensor-single-indicator displays
are associated with a higher mental workload that can be
further compromised in situations that induce high state
anxiety [1]. Therefore, attempts to introduce more relia-
bility indicators for different sensors should be justified
for their expected utility.
Finally, we used a highly controlled driving simulation
with a specific driving situation. This was deliberately
designed to minimize influences from the driving scene.
However, due to the relatively fixed timing used in the
study, participants could predict the next occurrence of
an overtaking situation. This could lead to a reduced
attention towards the reliability communication during
the times in-between the overtaking situations. Also,
the limited number and type of possible encountered
scenarios (i.e., four) could have affected the amount of
attention paid to and the judgement of importance of
the reliability communication.
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GUIDELINES
The current work has revealed some important user find-
ings with regards to how human-users of automated ve-
hicles might respond to the communication of system
reliability. We summarise the results in terms of five
guidelines as follows:
• Guideline 1: Providing training sessions to increase
the user experience with the system behaviour and
interface. As providing the chance for the old genera-
tion to gain experience in a controlled condition, would
overcome the fear of modern technology use.

• Guideline 2: Minimalistic color design in visualising
specific system states. As using distinctively different
colors to represent various values would be noticeably
perceived.

• Guideline 3: Employ multi-modal system feedback,
whereas reliability is preferred as visual and TORs as
haptic or auditory.

• Guideline 4: Adapting different feedback modalities
according to the nature of the non-driving task. This
is inline with the work of Large and colleagues, who
showed that the drivers’ posture in an autonomous
vehicle is relevant to the nature of the non-driving
task [24].

• Guideline 5: Reflecting the situation criticality
through the communicated reliability values update-
rate. In that sense, slow update rate would relate
to a stable and certain driving performance. While,
fast update rate would indicate an uncertain and risky
performance.

CONCLUSION
The introduction of autonomous vehicles into our daily
life routines will give rise to more design challenges. How
can we design communication systems that allow human
users that are no longer “in-the-loop” to be aware not only
of the operational environment but also of the changing
reliability of the systems that they rely on? In this paper,
we conducted a user study to investigate the effect of using
visual feedback in communicating the system’s reliability
values to the user. Our qualitative results (e.g., based
on questionnaires and semi-structured interviews) imply
some basic guidelines that serve as bases for reliability
communication design for autonomous vehicles.
More empirical work should be conducted around these
guidelines to evaluate their generalizability and robust-
ness to the complex and ever-changing landscape of au-
tonomous driving [23]. These findings provide new ev-
idence and a base for future inspection concerning the
reliability communication design in autonomous systems.
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