Ausgewählte Publikationen

Hier finden Sie ausgewählte Publikationen aus den letzten Jahren. Eine ausführliche Liste der Publikationen finden Sie auf der Google Scholar oder DBLP Seite von Stefan Schneegaß.

Art der Publikation: Beitrag in Zeitschrift

My Caregiver the Cobot: Comparing Visualization Techniques to Effectively Communicate Cobot Perception to People with Physical Impairments

Pascher, Max; Kronhardt, Kirill; Franzen, Til; Gruenefeld, Uwe; Schneegass, Stefan; Gerken, Jens
Titel der Zeitschrift:
MDPI Sensors
Jahrgang (Veröffentlichung):
22 (2022)
Digital Object Identifier (DOI):
Link zum Volltext:
Download BibTeX


Nowadays, robots are found in a growing number of areas where they collaborate closely with humans. Enabled by lightweight materials and safety sensors, these cobots are gaining increasing popularity in domestic care, where they support people with physical impairments in their everyday lives. However, when cobots perform actions autonomously, it remains challenging for human collaborators to understand and predict their behavior, which is crucial for achieving trust and user acceptance. One significant aspect of predicting cobot behavior is understanding their perception and comprehending how they "see" the world. To tackle this challenge, we compared three different visualization techniques for Spatial Augmented Reality. All of these communicate cobot perception by visually indicating which objects in the cobot's surrounding have been identified by their sensors. We compared the well-established visualizations Wedge and Halo against our proposed visualization Line in a remote user experiment with participants suffering from physical impairments. In a second remote experiment, we validated these findings with a broader non-specific user base. Our findings show that Line, a lower complexity visualization, results in significantly faster reaction times compared to Halo, and lower task load compared to both Wedge and Halo. Overall, users prefer Line as a more straightforward visualization. In Spatial Augmented Reality, with its known disadvantage of limited projection area size, established off-screen visualizations are not effective in communicating cobot perception and Line presents an easy-to-understand alternative.